Institute of Physiology, Medical Faculty, RWTH Aachen University, Aachen, Germany. Dr. Bressan is now with the German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany.
Department of Cell Biology, Institute for Biomedical Engineering, Medical Faculty, RWTH Aachen University, Aachen, Germany. Dr. Sontag is now with the Taconic Biosciences GmbH, Köln, Germany.
Pain. 2019 Jun;160(6):1327-1341. doi: 10.1097/j.pain.0000000000001511.
The chronic pain syndrome inherited erythromelalgia (IEM) is attributed to mutations in the voltage-gated sodium channel (NaV) 1.7. Still, recent studies targeting NaV1.7 in clinical trials have provided conflicting results. Here, we differentiated induced pluripotent stem cells from IEM patients with the NaV1.7/I848T mutation into sensory nociceptors. Action potentials in these IEM nociceptors displayed a decreased firing threshold, an enhanced upstroke, and afterhyperpolarization, all of which may explain the increased pain experienced by patients. Subsequently, we investigated the voltage dependence of the tetrodotoxin-sensitive NaV activation in these human sensory neurons using a specific prepulse voltage protocol. The IEM mutation induced a hyperpolarizing shift of NaV activation, which leads to activation of NaV1.7 at more negative potentials. Our results indicate that NaV1.7 is not active during subthreshold depolarizations, but that its activity defines the action potential threshold and contributes significantly to the action potential upstroke. Thus, our model system with induced pluripotent stem cell-derived sensory neurons provides a new rationale for NaV1.7 function and promises to be valuable as a translational tool to profile and develop more efficacious clinical analgesics.
遗传性红斑性疼痛综合征(IEM)是由电压门控钠离子通道(NaV)1.7 的突变引起的。然而,最近在临床试验中针对 NaV1.7 的研究提供了相互矛盾的结果。在这里,我们将 IEM 患者的诱导多能干细胞分化为感觉伤害感受器。这些 IEM 伤害感受器中的动作电位显示出降低的发放阈值、增强的上升和后超极化,所有这些都可能解释了患者所经历的疼痛增加。随后,我们使用特定的预脉冲电压方案研究了这些人感觉神经元中河豚毒素敏感的 NaV 激活的电压依赖性。IEM 突变诱导 NaV 激活的超极化移位,导致 NaV1.7 在更负的电位下激活。我们的结果表明,NaV1.7 在亚阈去极化期间不活跃,但它的活性定义了动作电位阈值,并对动作电位上升有很大贡献。因此,我们的诱导多能干细胞衍生感觉神经元模型系统为 NaV1.7 的功能提供了新的依据,并有望成为一种有价值的转化工具,用于分析和开发更有效的临床镇痛剂。