Department of Cardiology, Boston Children's Hospital, Boston, MA 02115;
Department of Cardiology, Boston Children's Hospital, Boston, MA 02115.
Proc Natl Acad Sci U S A. 2021 Jan 12;118(2). doi: 10.1073/pnas.2008861118.
The paucity of knowledge about cardiomyocyte maturation is a major bottleneck in cardiac regenerative medicine. In development, cardiomyocyte maturation is characterized by orchestrated structural, transcriptional, and functional specializations that occur mainly at the perinatal stage. Sarcomeres are the key cytoskeletal structures that regulate the ultrastructural maturation of other organelles, but whether sarcomeres modulate the signal transduction pathways that are essential for cardiomyocyte maturation remains unclear. To address this question, here we generated mice with cardiomyocyte-specific, mosaic, and hypomorphic mutations of α-actinin-2 () to study the cell-autonomous roles of sarcomeres in postnatal cardiomyocyte maturation. mutation resulted in defective structural maturation of transverse-tubules and mitochondria. In addition, mutation triggered transcriptional dysregulation, including abnormal expression of key sarcomeric and mitochondrial genes, and profound impairment of the normal progression of maturational gene expression. Mechanistically, the transcriptional changes in mutant cardiomyocytes strongly correlated with those in cardiomyocytes deleted of serum response factor (SRF), a critical transcription factor that regulates cardiomyocyte maturation. mutation increased the monomeric form of cardiac α-actin, which interacted with the SRF cofactor MRTFA and perturbed its nuclear localization. Overexpression of a dominant-negative MRTFA mutant was sufficient to recapitulate the morphological and transcriptional defects in and mutant cardiomyocytes. Together, these data indicate that -based sarcomere organization regulates structural and transcriptional maturation of cardiomyocytes through MRTF-SRF signaling.
心肌细胞成熟知识的匮乏是心脏再生医学的主要瓶颈。在发育过程中,心肌细胞的成熟表现为协调的结构、转录和功能特化,主要发生在围生期。肌节是调节其他细胞器超微结构成熟的关键细胞骨架结构,但肌节是否调节对心肌细胞成熟至关重要的信号转导途径尚不清楚。为了解决这个问题,我们在这里生成了肌球蛋白重链肌节特异性、镶嵌性和低功能突变的小鼠 (),以研究肌节在出生后心肌细胞成熟中的细胞自主作用。 突变导致横管和线粒体的结构成熟缺陷。此外, 突变引发转录失调,包括关键肌节和线粒体基因的异常表达,以及正常成熟基因表达进程的严重损害。从机制上讲, 突变心肌细胞中的转录变化与血清反应因子 (SRF)缺失的心肌细胞中的转录变化强烈相关,SRF 是调节心肌细胞成熟的关键转录因子。 突变增加了心脏α-肌动蛋白的单体形式,与 SRF 辅助因子 MRTFA 相互作用,并扰乱其核定位。过表达显性失活 MRTFA 突变足以重现 和 突变心肌细胞的形态和转录缺陷。总之,这些数据表明基于肌球蛋白重链的肌节组织通过 MRTF-SRF 信号调节心肌细胞的结构和转录成熟。