Suppr超能文献

基于P流的可视化:从图像分析中提取的基于梯度和特征的光流及矢量场。

Visualization by P-flow: gradient- and feature-based optical flow and vector fields extracted from image analysis.

作者信息

Suzuki Wataru, Hiyama Atsushi, Ichinohe Noritaka, Yamashita Wakayo, Seno Takeharu, Takeichi Hiroshige

出版信息

J Opt Soc Am A Opt Image Sci Vis. 2020 Dec 1;37(12):1958-1964. doi: 10.1364/JOSAA.398677.

Abstract

We proposed a method for extracting the optical flow suitable for visualization, pseudo-flow (P-flow), from a natural movie [Exp. Brain Res.237, 3321 (2019)EXBRAP0014-481910.1007/s00221-019-05674-0]. The P-flow algorithm comprises two stages: (1) extraction of a local motion vector field from two successive frames and (2) tracking of vectors between two successive frame pairs. In this study, we show that while P-flow takes a feature (vector) tracking approach, it is also classified as a gradient-based approach that satisfies the brightness constancy constraint. We also incorporate interpolation and a corner detector to address the shortcomings associated with the two approaches.

摘要

我们提出了一种从自然电影中提取适用于可视化的光流即伪流(P-flow)的方法[《实验脑研究》237, 3321 (2019) EXBRAP0014 - 4819 10.1007/s00221 - 019 - 05674 - 0]。P-flow算法包括两个阶段:(1) 从两个连续帧中提取局部运动矢量场,以及 (2) 跟踪两个连续帧对之间的矢量。在本研究中,我们表明,虽然P-flow采用特征(矢量)跟踪方法,但它也可归类为满足亮度恒定约束的基于梯度的方法。我们还纳入了插值和角点检测器来解决与这两种方法相关的缺点。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验