Suppr超能文献

利用跟踪图像梯度向量从运动中感知非刚性结构。

Perception of nonrigid structures from motion using tracking image gradient vectors.

作者信息

Takeichi Hiroshige, Suzuki Wataru, Yamashita Wakayo, Hiyama Atsushi

机构信息

Open Systems Information Science Special Team, Predictive Medicine Special Project (PMSP), RIKEN Center for Integrative Medical Sciences (IMS), RIKEN, Yokohama, Kanagawa, Japan.

Computational Engineering Applications Unit, Head Office for Information Systems and Cybersecurity (ISC), RIKEN, Wako, Saitama, Japan.

出版信息

Front Psychol. 2025 Aug 26;16:1586648. doi: 10.3389/fpsyg.2025.1586648. eCollection 2025.

Abstract

INTRODUCTION

A subset of the true optical flow can be extracted by constructing a vector field that represents image gradients and then tracking vectors in this vector field. This pseudo-flow (p-flow) subset effectively visualizes nonrigid motion and leads to the perception of nonrigid structure from motion. In this study, we investigate whether the human sensory system can extract information about the physical properties of inanimate fluid, especially viscosity, from the p-flow.

METHODS

Computer-generated movies of flowing liquid were constructed using the p-flow algorithm and the Lucas-Kanade method. The movies featured liquids of different viscosities in the form of point-light displays. The viscosity of the fluid in various subsets of these movies was then estimated by 312 participants.

RESULTS

The error, i.e., difference between expected and actual ratings showed smaller variability across repeated trials and the mean response time was significantly shorter when using the p-flow than with the conventional Lucas-Kanade method.

DISCUSSION

Our results suggest that the p-flow enables a more reliable viscosity rating, which could be related to the local constraint used in the algorithm.

摘要

引言

通过构建一个表示图像梯度的矢量场,然后在该矢量场中跟踪矢量,可以提取真实光流的一个子集。这个伪流(p-flow)子集有效地可视化了非刚性运动,并从运动中产生了对非刚性结构的感知。在本研究中,我们调查人类感官系统是否能够从p流中提取有关无生命流体物理特性的信息,特别是粘度。

方法

使用p流算法和卢卡斯-卡纳德方法构建了流动液体的计算机生成电影。这些电影以点光显示的形式呈现不同粘度的液体。然后,312名参与者估计了这些电影各个子集中流体的粘度。

结果

误差,即预期评分与实际评分之间的差异,在重复试验中显示出较小的变异性,并且使用p流时的平均响应时间明显短于传统的卢卡斯-卡纳德方法。

讨论

我们的结果表明,p流能够实现更可靠的粘度评分,这可能与算法中使用的局部约束有关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/566f/12418981/047c39704eef/fpsyg-16-1586648-g002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验