Suppr超能文献

详细的 hDMDdel52/mdx 小鼠模型的遗传和功能分析。

Detailed genetic and functional analysis of the hDMDdel52/mdx mouse model.

机构信息

Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.

BioMarin Nederland BV, Leiden, The Netherlands.

出版信息

PLoS One. 2020 Dec 23;15(12):e0244215. doi: 10.1371/journal.pone.0244215. eCollection 2020.

Abstract

Duchenne muscular dystrophy (DMD) is a severe, progressive neuromuscular disorder caused by reading frame disrupting mutations in the DMD gene leading to absence of functional dystrophin. Antisense oligonucleotide (AON)-mediated exon skipping is a therapeutic approach aimed at restoring the reading frame at the pre-mRNA level, allowing the production of internally truncated partly functional dystrophin proteins. AONs work in a sequence specific manner, which warrants generating humanized mouse models for preclinical tests. To address this, we previously generated the hDMDdel52/mdx mouse model using transcription activator like effector nuclease (TALEN) technology. This model contains mutated murine and human DMD genes, and therefore lacks mouse and human dystrophin resulting in a dystrophic phenotype. It allows preclinical evaluation of AONs inducing the skipping of human DMD exons 51 and 53 and resulting in restoration of dystrophin synthesis. Here, we have further characterized this model genetically and functionally. We discovered that the hDMD and hDMDdel52 transgene is present twice per locus, in a tail-to-tail-orientation. Long-read sequencing revealed a partial deletion of exon 52 (first 25 bp), and a 2.3 kb inversion in intron 51 in both copies. These new findings on the genomic make-up of the hDMD and hDMDdel52 transgene do not affect exon 51 and/or 53 skipping, but do underline the need for extensive genetic analysis of mice generated with genome editing techniques to elucidate additional genetic changes that might have occurred. The hDMDdel52/mdx mice were also evaluated functionally using kinematic gait analysis. This revealed a clear and highly significant difference in overall gait between hDMDdel52/mdx mice and C57BL6/J controls. The motor deficit detected in the model confirms its suitability for preclinical testing of exon skipping AONs for human DMD at both the functional and molecular level.

摘要

杜氏肌营养不良症(DMD)是一种严重的进行性神经肌肉疾病,由 DMD 基因中的读码框破坏突变引起,导致功能性肌营养不良蛋白缺失。反义寡核苷酸(AON)介导的外显子跳跃是一种治疗方法,旨在在 pre-mRNA 水平上恢复读码框,允许产生内部截断的部分功能肌营养不良蛋白。AON 以序列特异性方式发挥作用,这需要生成用于临床前测试的人源化小鼠模型。为了解决这个问题,我们之前使用转录激活子样效应物核酸酶(TALEN)技术生成了 hDMDdel52/mdx 小鼠模型。该模型包含突变的鼠和人 DMD 基因,因此缺乏鼠和人肌营养不良蛋白,导致肌营养不良表型。它允许对诱导人类 DMD 外显子 51 和 53 跳跃并导致肌营养不良蛋白合成恢复的 AON 进行临床前评估。在这里,我们进一步对该模型进行了遗传和功能表征。我们发现 hDMD 和 hDMDdel52 转基因在每个基因座上以尾对尾的方式存在两次。长读测序显示,两个拷贝的外显子 52(前 25 个 bp)和内含子 51 中有 2.3 kb 的倒位。这些 hDMD 和 hDMDdel52 转基因的基因组结构的新发现不会影响外显子 51 和/或 53 的跳跃,但确实强调了需要对使用基因组编辑技术生成的小鼠进行广泛的遗传分析,以阐明可能发生的其他遗传变化。还使用运动学步态分析对 hDMDdel52/mdx 小鼠进行了功能评估。这表明 hDMDdel52/mdx 小鼠和 C57BL6/J 对照之间的整体步态存在明显且高度显著的差异。模型中检测到的运动缺陷证实了其适合在功能和分子水平上对人类 DMD 的外显子跳跃 AON 进行临床前测试。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0c1/7757897/e656cc61955a/pone.0244215.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验