School of Biomedicine and Robinson Research Institute, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia.
Genome Editing Program, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia.
BMC Biol. 2024 Sep 27;22(1):214. doi: 10.1186/s12915-024-02008-7.
The development of sequence-specific precision treatments like CRISPR gene editing therapies for Duchenne muscular dystrophy (DMD) requires sequence humanized animal models to enable the direct clinical translation of tested strategies. The current available integrated transgenic mouse model containing the full-length human DMD gene, Tg(DMD)72Thoen/J (hDMDTg), has been found to have two copies of the transgene per locus in a tail-to-tail orientation, which does not accurately simulate the true (single) copy number of the DMD gene. This duplication also complicates analysis when testing CRISPR therapy editing outcomes, as large genetic alterations and rearrangements can occur between the cut sites on the two transgenes.
To address this, we performed long read nanopore sequencing on hDMDTg mice to better understand the structure of the duplicated transgenes. Following that, we performed a megabase-scale deletion of one of the transgenes by CRISPR zygotic microinjection to generate a single-copy, full-length, humanized DMD transgenic mouse model (hDMDTgSc). Functional, molecular, and histological characterisation shows that the single remaining human transgene retains its function and rescues the dystrophic phenotype caused by endogenous murine Dmd knockout.
Our unique hDMDTgSc mouse model simulates the true copy number of the DMD gene, and can potentially be used for the further generation of DMD disease models that would be better suited for the pre-clinical assessment and development of sequence specific CRISPR therapies.
开发针对杜氏肌营养不良症(DMD)的序列特异性精准治疗方法,如 CRISPR 基因编辑疗法,需要序列人源化动物模型,以实现经测试策略的直接临床转化。目前可用的含有全长人 DMD 基因的整合转基因小鼠模型 Tg(DMD)72Thoen/J(hDMDTg),被发现每个基因座都有两个转基因拷贝以尾对尾的方式排列,这不能准确模拟 DMD 基因的真实(单个)拷贝数。这种重复也使在测试 CRISPR 治疗编辑结果时的分析变得复杂,因为两个转基因体上的切割位点之间可能发生较大的遗传改变和重排。
为了解决这个问题,我们对 hDMDTg 小鼠进行了长读长纳米孔测序,以更好地了解重复转基因的结构。之后,我们通过 CRISPR 胚胎显微注射对其中一个转基因进行了兆碱基规模的缺失,从而产生了一个单拷贝、全长、人源化的 DMD 转基因小鼠模型(hDMDTgSc)。功能、分子和组织学特征表明,单个剩余的人转基因保留其功能,并挽救了由内源性鼠 Dmd 敲除引起的肌营养不良表型。
我们独特的 hDMDTgSc 小鼠模型模拟了 DMD 基因的真实拷贝数,并且可能被用于进一步生成更适合于序列特异性 CRISPR 疗法的临床前评估和开发的 DMD 疾病模型。