Suppr超能文献

利用综合生物信息学分析鉴定胰腺癌中与预后相关的关键氧化应激基因

Identification of Hub Prognosis-Associated Oxidative Stress Genes in Pancreatic Cancer Using Integrated Bioinformatics Analysis.

作者信息

Qiu Xin, Hou Qin-Han, Shi Qiu-Yue, Jiang Hai-Xing, Qin Shan-Yu

机构信息

Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.

Department of Neurosurgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China.

出版信息

Front Genet. 2020 Dec 8;11:595361. doi: 10.3389/fgene.2020.595361. eCollection 2020.

Abstract

BACKGROUND

Intratumoral oxidative stress (OS) has been associated with the progression of various tumors. However, OS has not been considered a candidate therapeutic target for pancreatic cancer (PC) owing to the lack of validated biomarkers.

METHODS

We compared gene expression profiles of PC samples and the transcriptome data of normal pancreas tissues from The Cancer Genome Atlas (TCGA) and Genome Tissue Expression (GTEx) databases to identify differentially expressed OS genes in PC. PC patients' gene profile from the Gene Expression Omnibus (GEO) database was used as a validation cohort.

RESULTS

A total of 148 differentially expressed OS-related genes in PC were used to construct a protein-protein interaction network. Univariate Cox regression analysis, least absolute shrinkage, selection operator analysis revealed seven hub prognosis-associated OS genes that served to construct a prognostic risk model. Based on integrated bioinformatics analyses, our prognostic model, whose diagnostic accuracy was validated in both cohorts, reliably predicted the overall survival of patients with PC and cancer progression. Further analysis revealed significant associations between seven hub gene expression levels and patient outcomes, which were validated at the protein level using the Human Protein Atlas database. A nomogram based on the expression of these seven hub genes exhibited prognostic value in PC.

CONCLUSION

Our study provides novel insights into PC pathogenesis and provides new genetic markers for prognosis prediction and clinical treatment personalization for PC patients.

摘要

背景

肿瘤内氧化应激(OS)与多种肿瘤的进展相关。然而,由于缺乏经过验证的生物标志物,OS尚未被视为胰腺癌(PC)的候选治疗靶点。

方法

我们比较了癌症基因组图谱(TCGA)和基因组组织表达(GTEx)数据库中PC样本的基因表达谱以及正常胰腺组织的转录组数据,以鉴定PC中差异表达的OS基因。来自基因表达综合数据库(GEO)的PC患者基因谱用作验证队列。

结果

共使用PC中148个差异表达的OS相关基因构建蛋白质-蛋白质相互作用网络。单变量Cox回归分析、最小绝对收缩和选择算子分析揭示了七个与预后相关的关键OS基因,用于构建预后风险模型。基于综合生物信息学分析,我们的预后模型在两个队列中均验证了其诊断准确性,能够可靠地预测PC患者的总生存期和癌症进展。进一步分析揭示了七个关键基因表达水平与患者预后之间的显著关联,并使用人类蛋白质图谱数据库在蛋白质水平上进行了验证。基于这七个关键基因表达的列线图在PC中具有预后价值。

结论

我们的研究为PC发病机制提供了新见解,并为PC患者的预后预测和临床治疗个性化提供了新的遗传标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b076/7753072/e84aab5bcde5/fgene-11-595361-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验