Suppr超能文献

放射组学特征激活图作为一种实现特征可解释性的新工具。

Radiomics Feature Activation Maps as a New Tool for Signature Interpretability.

作者信息

Vuong Diem, Tanadini-Lang Stephanie, Wu Ze, Marks Robert, Unkelbach Jan, Hillinger Sven, Eboulet Eric Innocents, Thierstein Sandra, Peters Solange, Pless Miklos, Guckenberger Matthias, Bogowicz Marta

机构信息

Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland.

Department of Thoracic Surgery, University Hospital Zurich and University of Zurich, Zurich, Switzerland.

出版信息

Front Oncol. 2020 Dec 8;10:578895. doi: 10.3389/fonc.2020.578895. eCollection 2020.

Abstract

INTRODUCTION

In the field of personalized medicine, radiomics has shown its potential to support treatment decisions. However, the limited feature interpretability hampers its introduction into the clinics. Here, we propose a new methodology to create radiomics feature activation maps, which allows to identify the spatial-anatomical locations responsible for signature activation based on local radiomics. The feasibility of this technique will be studied for histological subtype differentiation (adenocarcinoma squamous cell carcinoma) in non-small cell lung cancer (NSCLC) using computed tomography (CT) radiomics.

MATERIALS AND METHODS

Pre-treatment CT scans were collected from a multi-centric Swiss trial (training, n=73, IIIA/N2 NSCLC, SAKK 16/00) and an independent cohort (validation, n=32, IIIA/N2/IIIB NSCLC). Based on the gross tumor volume (GTV), four peritumoral region of interests (ROI) were defined: lung_exterior (expansion into the lung), iso_exterior (expansion into lung and soft tissue), gradient (GTV border region), GTV+Rim (GTV and iso_exterior). For each ROI, 154 radiomic features were extracted using an in-house developed software implementation (Z-Rad, Python v2.7.14). Features robust against delineation variability served as an input for a multivariate logistic regression analysis. Model performance was quantified using the area under the receiver operating characteristic curve (AUC) and verified using five-fold cross validation and internal validation. Local radiomic features were extracted from the GTV+Rim ROI using non-overlapping 3x3x3 voxel patches previously marked as GTV or rim. A binary activation map was created for each patient using the median global feature value from the training. The ratios of activated/non-activated patches of GTV and rim regions were compared between histological subtypes (Wilcoxon test).

RESULTS

Iso_exterior, gradient, GTV+Rim showed good performances for histological subtype prediction (AUC=0.68-0.72 and AUC=0.73-0.74) whereas GTV and lung_exterior models failed validation. GTV+Rim model feature activation maps showed that local texture feature distribution differed significantly between histological subtypes in the rim (p=0.0481) but not in the GTV (p=0.461).

CONCLUSION

In this exploratory study, radiomics-based prediction of NSCLC histological subtypes was predominantly based on the peritumoral region indicating that radiomics activation maps can be useful for tracing back the spatial location of regions responsible for signature activation.

摘要

引言

在精准医学领域,放射组学已展现出支持治疗决策的潜力。然而,其有限的特征可解释性阻碍了它在临床中的应用。在此,我们提出一种创建放射组学特征激活图的新方法,该方法能够基于局部放射组学识别导致特征激活的空间解剖位置。将使用计算机断层扫描(CT)放射组学研究该技术在非小细胞肺癌(NSCLC)组织学亚型分化(腺癌与鳞状细胞癌)中的可行性。

材料与方法

从一项多中心瑞士试验(训练组,n = 73,IIIA/N2期NSCLC,SAKK 16/00)和一个独立队列(验证组,n = 32,IIIA/N2/IIIB期NSCLC)收集治疗前的CT扫描图像。基于大体肿瘤体积(GTV),定义了四个瘤周感兴趣区域(ROI):肺外(向肺内扩展)、等密度外(向肺和软组织扩展)、梯度(GTV边界区域)、GTV + 边缘(GTV和等密度外区域)。对于每个ROI,使用内部开发的软件实现(Z - Rad,Python v2.7.14)提取154个放射组学特征。对轮廓变化具有鲁棒性的特征作为多变量逻辑回归分析的输入。使用受试者操作特征曲线下面积(AUC)对模型性能进行量化,并通过五折交叉验证和内部验证进行验证。使用先前标记为GTV或边缘的不重叠3×3×3体素块从GTV + 边缘ROI中提取局部放射组学特征。使用训练集中的中位数全局特征值为每位患者创建一个二元激活图。比较组织学亚型之间GTV和边缘区域的激活/未激活块的比例(Wilcoxon检验)。

结果

等密度外、梯度、GTV + 边缘在组织学亚型预测方面表现良好(AUC = 0.68 - 0.72和AUC = 0.73 - 0.74),而GTV和肺外模型未通过验证。GTV + 边缘模型特征激活图显示,边缘区域的局部纹理特征分布在组织学亚型之间存在显著差异(p = 0.0481),而在GTV中无显著差异(p = 0.461)。

结论

在这项探索性研究中,基于放射组学对NSCLC组织学亚型的预测主要基于瘤周区域,这表明放射组学激活图可用于追溯导致特征激活的区域的空间位置。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f34b/7753181/0553cc80e64b/fonc-10-578895-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验