Suppr超能文献

盐胁迫下大麦根区的综合多组学分析揭示了两种不同的耐盐机制。

Integrative Multi-omics Analyses of Barley Rootzones under Salinity Stress Reveal Two Distinctive Salt Tolerance Mechanisms.

机构信息

School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia.

School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia.

出版信息

Plant Commun. 2020 Feb 13;1(3):100031. doi: 10.1016/j.xplc.2020.100031. eCollection 2020 May 11.

Abstract

The mechanisms underlying rootzone-localized responses to salinity during early stages of barley development remain elusive. In this study, we performed the analyses of multi-root-omes (transcriptomes, metabolomes, and lipidomes) of a domesticated barley cultivar (Clipper) and a landrace (Sahara) that maintain and restrict seedling root growth under salt stress, respectively. Novel generalized linear models were designed to determine differentially expressed genes (DEGs) and abundant metabolites (DAMs) specific to salt treatments, genotypes, or rootzones (meristematic Z1, elongation Z2, and maturation Z3). Based on pathway over-representation of the DEGs and DAMs, phenylpropanoid biosynthesis is the most statistically enriched biological pathway among all salinity responses observed. Together with histological evidence, an intense salt-induced lignin impregnation was found only at stelic cell wall of Clipper Z2, compared with a unique elevation of suberin deposition across Sahara Z2. This suggests two differential salt-induced modulations of apoplastic flow between the genotypes. Based on the global correlation network of the DEGs and DAMs, callose deposition that potentially adjusted symplastic flow in roots was almost independent of salinity in rootzones of Clipper, and was markedly decreased in Sahara. Taken together, we propose two distinctive salt tolerance mechanisms in Clipper (growth-sustaining) and Sahara (salt-shielding), providing important clues for improving crop plasticity to cope with deteriorating global soil salinization.

摘要

在大麦发育早期,盐胁迫下根区本地化响应的机制仍不清楚。在这项研究中,我们对栽培大麦品种(Clipper)和地方品种(Sahara)进行了多根组学(转录组、代谢组和脂质组)分析,这两个品种分别在盐胁迫下维持和限制幼苗根生长。设计了新的广义线性模型来确定盐处理、基因型或根区(分生组织 Z1、伸长 Z2 和成熟 Z3)特异性差异表达基因(DEGs)和丰富的代谢物(DAMs)。基于 DEGs 和 DAMs 的途径过表达分析,苯丙烷生物合成是所有观察到的盐响应中最具统计学意义的生物途径。结合组织学证据,发现 Clipper Z2 的茎细胞壁处存在强烈的盐诱导木质素浸渍,而 Sahara Z2 则存在独特的角质层沉积升高。这表明两种不同的盐诱导模式调节了两种基因型之间的质外体流动。基于 DEGs 和 DAMs 的全局相关网络,在 Clipper 的根区中,潜在调节根系共质流的胼胝质沉积几乎不受盐度的影响,而在 Sahara 中则明显减少。综上所述,我们提出了 Clipper(生长维持)和 Sahara(盐屏蔽)两种独特的耐盐机制,为提高作物可塑性以应对全球土壤盐渍化恶化提供了重要线索。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b60/7748018/a8dfd602033e/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验