Sarabia Lenin D, Boughton Berin A, Rupasinghe Thusitha, van de Meene Allison M L, Callahan Damien L, Hill Camilla B, Roessner Ute
School of BioSciences, University of Melbourne, Parkville, VIC, 3010, Australia.
Metabolomics Australia, School of BioSciences, University of Melbourne, Parkville, VIC, 3010, Australia.
Metabolomics. 2018;14(5):63. doi: 10.1007/s11306-018-1359-3. Epub 2018 Apr 19.
Mass spectrometry imaging (MSI) is a technology that enables the visualization of the spatial distribution of hundreds to thousands of metabolites in the same tissue section simultaneously. Roots are below-ground plant organs that anchor plants to the soil, take up water and nutrients, and sense and respond to external stresses. Physiological responses to salinity are multifaceted and have predominantly been studied using whole plant tissues that cannot resolve plant salinity responses spatially.
This study aimed to use a comprehensive approach to study the spatial distribution and profiles of metabolites, and to quantify the changes in the elemental content in young developing barley seminal roots before and after salinity stress.
Here, we used a combination of liquid chromatography-mass spectrometry (LC-MS), inductively coupled plasma mass spectrometry (ICP-MS), and matrix-assisted laser desorption/ionization (MALDI-MSI) platforms to profile and analyze the spatial distribution of ions, metabolites and lipids across three anatomically different barley root zones before and after a short-term salinity stress (150 mM NaCl).
We localized, visualized and discriminated compounds in fine detail along longitudinal root sections and compared ion, metabolite, and lipid composition before and after salt stress. Large changes in the phosphatidylcholine (PC) profiles were observed as a response to salt stress with PC 34:n showing an overall reduction in salt treated roots. ICP-MS analysis quantified changes in the elemental content of roots with increases of Na and decreases of K content.
Our results established the suitability of combining three mass spectrometry platforms to analyze and map ionic and metabolic responses to salinity stress in plant roots and to elucidate tolerance mechanisms in response to abiotic stress, such as salinity stress.
质谱成像(MSI)是一项能够同时可视化同一组织切片中数百至数千种代谢物空间分布的技术。根是植物的地下器官,它将植物固定在土壤中,吸收水分和养分,并感知和响应外部胁迫。对盐度的生理反应是多方面的,主要是使用全株组织进行研究,而全株组织无法在空间上解析植物对盐度的反应。
本研究旨在采用综合方法研究代谢物的空间分布和特征,并量化盐胁迫前后发育中的大麦幼胚根中元素含量的变化。
在这里,我们结合使用液相色谱 - 质谱联用(LC-MS)、电感耦合等离子体质谱(ICP-MS)和基质辅助激光解吸/电离(MALDI-MSI)平台,对短期盐胁迫(150 mM NaCl)前后大麦根三个解剖学不同区域的离子、代谢物和脂质的空间分布进行分析和剖析。
我们在根的纵向切片上对化合物进行了精细的定位、可视化和区分,并比较了盐胁迫前后离子、代谢物和脂质的组成。观察到磷脂酰胆碱(PC)谱因盐胁迫而发生了很大变化,其中PC 34:n在盐处理的根中总体减少。ICP-MS分析量化了根中元素含量的变化,Na含量增加,K含量降低。
我们的结果证实了结合三种质谱平台来分析和绘制植物根对盐胁迫的离子和代谢反应,并阐明对非生物胁迫(如盐胁迫)的耐受机制的适用性。