Program in Developmental Biology, Baylor College of Medicine, Houston, Texas.
Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas.
Neuro Oncol. 2021 Jun 1;23(6):932-944. doi: 10.1093/neuonc/noaa297.
Glioblastoma is the most common and aggressive type of primary brain tumor, as most patients succumb to the disease less than two years after diagnosis. Critically, studies demonstrate that glioma recruits surrounding blood vessels, while some work suggests that tumor stem cells themselves directly differentiate into endothelial cells, yet the molecular and cellular dynamics of the endothelium in glioma are poorly characterized. The goal of this study was to establish molecular and morphological benchmarks for tumor associated vessels (TAVs) and tumor derived endothelial cells (TDECs) during glioblastoma progression.
Using In-Utero Electroporation and CRISPR/Cas9 genome engineering to generate a native, immunocompetent mouse model of glioma, we characterized vascular-tumor dynamics in three dimensions during tumor progression. We employed bulk and single-cell RNA-Sequencing to elucidate the relationship between TAVs and TDECs. We confirmed our findings in a patient derived orthotopic xenograft (PDOX) model.
Using a mouse model of glioma, we identified progressive alteration of vessel function and morphogenesis over time. We also showed in our mouse model that TDECs are a rare subpopulation that contributes to vessels within the tumor, albeit to a limited degree. Furthermore, transcriptional profiling demonstrates that both TAVs and TDECs are molecularly distinct, and both populations feature extensive molecular heterogeneity. Finally, the distinct molecular signatures of these heterogeneous populations are also present in human glioma.
Our findings show extensive endothelial heterogeneity within the tumor and tumor microenvironment and provide insights into the diverse cellular and molecular mechanisms that drive glioma vascularization and angiogenesis during tumorigenesis.
胶质母细胞瘤是最常见和侵袭性最强的原发性脑肿瘤,大多数患者在诊断后不到两年就死于该疾病。重要的是,研究表明神经胶质瘤招募周围的血管,而一些研究表明肿瘤干细胞本身直接分化为内皮细胞,但神经胶质瘤内皮细胞的分子和细胞动力学特征描述甚少。本研究的目的是在神经胶质瘤进展过程中为肿瘤相关血管(TAV)和肿瘤衍生的内皮细胞(TDEC)建立分子和形态学基准。
使用在体电穿孔和 CRISPR/Cas9 基因组工程技术生成神经胶质瘤的天然、免疫活性的小鼠模型,我们在三维空间中对肿瘤进展过程中的血管-肿瘤动力学进行了研究。我们采用 bulk 和单细胞 RNA 测序来阐明 TAV 和 TDEC 之间的关系。我们在患者来源的原位异种移植(PDOX)模型中验证了我们的发现。
我们使用神经胶质瘤的小鼠模型,确定了随时间推移血管功能和形态发生的渐进性改变。我们还在我们的小鼠模型中表明,TDEC 是一个罕见的亚群,它在一定程度上有助于肿瘤内的血管。此外,转录谱分析表明,TAV 和 TDEC 在分子上是不同的,这两种群体都具有广泛的分子异质性。最后,这些异质群体的独特分子特征也存在于人类胶质母细胞瘤中。
我们的研究结果表明肿瘤和肿瘤微环境中的内皮细胞具有广泛的异质性,并深入了解了在肿瘤发生过程中驱动神经胶质瘤血管生成和血管生成的多种细胞和分子机制。