Suppr超能文献

IFT54 直接与驱动蛋白 -II 和 IFT 动力蛋白相互作用,以调节正向鞭毛内运输。

IFT54 directly interacts with kinesin-II and IFT dynein to regulate anterograde intraflagellar transport.

机构信息

MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.

Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong Province, China.

出版信息

EMBO J. 2021 Mar 1;40(5):e105781. doi: 10.15252/embj.2020105781. Epub 2020 Dec 28.

Abstract

The intraflagellar transport (IFT) machinery consists of the anterograde motor kinesin-II, the retrograde motor IFT dynein, and the IFT-A and -B complexes. However, the interaction among IFT motors and IFT complexes during IFT remains elusive. Here, we show that the IFT-B protein IFT54 interacts with both kinesin-II and IFT dynein and regulates anterograde IFT. Deletion of residues 342-356 of Chlamydomonas IFT54 resulted in diminished anterograde traffic of IFT and accumulation of IFT motors and complexes in the proximal region of cilia. IFT54 directly interacted with kinesin-II and this interaction was strengthened for the IFT54 mutant in vitro and in vivo. The deletion of residues 261-275 of IFT54 reduced ciliary entry and anterograde traffic of IFT dynein with accumulation of IFT complexes near the ciliary tip. IFT54 directly interacted with IFT dynein subunit D1bLIC, and deletion of residues 261-275 reduced this interaction. The interactions between IFT54 and the IFT motors were also observed in mammalian cells. Our data indicate a central role for IFT54 in binding the IFT motors during anterograde IFT.

摘要

内鞭毛运输(IFT)机制由正向运动的驱动蛋白-2(kinesin-II)、逆向运动的 IFT 动力蛋白 dynein、IFT-A 和 -B 复合物组成。然而,IFT 期间 IFT 马达和 IFT 复合物之间的相互作用仍难以捉摸。在这里,我们表明 IFT-B 蛋白 IFT54 与 kinesin-II 和 IFT 动力蛋白 dynein 相互作用,并调节正向 IFT。删除衣藻 IFT54 的 342-356 个残基导致 IFT 的正向运输减少,IFT 马达和复合物在纤毛的近端区域积累。IFT54 与 kinesin-II 直接相互作用,这种相互作用在体外和体内的 IFT54 突变体中得到增强。IFT54 的 261-275 个残基缺失减少了 IFT 动力蛋白的纤毛进入和正向运输,IFT 复合物在纤毛尖端附近积累。IFT54 与 IFT 动力蛋白亚基 D1bLIC 直接相互作用,而 261-275 个残基缺失减少了这种相互作用。IFT54 与 IFT 马达之间的相互作用也在哺乳动物细胞中观察到。我们的数据表明,IFT54 在正向 IFT 期间结合 IFT 马达中起着核心作用。

相似文献

1
IFT54 directly interacts with kinesin-II and IFT dynein to regulate anterograde intraflagellar transport.
EMBO J. 2021 Mar 1;40(5):e105781. doi: 10.15252/embj.2020105781. Epub 2020 Dec 28.
2
Conversion of anterograde into retrograde trains is an intrinsic property of intraflagellar transport.
Curr Biol. 2022 Sep 26;32(18):4071-4078.e4. doi: 10.1016/j.cub.2022.07.033. Epub 2022 Aug 3.
3
Quantitative proteomics reveals insights into the assembly of IFT trains and ciliary assembly.
J Cell Sci. 2024 Jul 1;137(13). doi: 10.1242/jcs.262152. Epub 2024 Jul 3.
4
Intraflagellar transport: mechanisms of motor action, cooperation, and cargo delivery.
FEBS J. 2017 Sep;284(18):2905-2931. doi: 10.1111/febs.14068. Epub 2017 Apr 18.
7
IFT54 regulates IFT20 stability but is not essential for tubulin transport during ciliogenesis.
Cell Mol Life Sci. 2017 Sep;74(18):3425-3437. doi: 10.1007/s00018-017-2525-x. Epub 2017 Apr 17.
8
Dynamics of the IFT machinery at the ciliary tip.
Elife. 2017 Sep 20;6:e28606. doi: 10.7554/eLife.28606.
10
Probing the role of IFT particle complex A and B in flagellar entry and exit of IFT-dynein in Chlamydomonas.
Protoplasma. 2012 Jul;249(3):851-6. doi: 10.1007/s00709-011-0311-4. Epub 2011 Aug 19.

引用本文的文献

1
DYF-5 regulates intraflagellar transport by affecting train turnaround.
Mol Biol Cell. 2025 May 1;36(5):ar53. doi: 10.1091/mbc.E24-08-0378. Epub 2025 Mar 12.
3
The intraflagellar transport cycle.
Nat Rev Mol Cell Biol. 2025 Mar;26(3):175-192. doi: 10.1038/s41580-024-00797-x. Epub 2024 Nov 13.
4
Extensive structural rearrangement of intraflagellar transport trains underpins bidirectional cargo transport.
Cell. 2024 Aug 22;187(17):4621-4636.e18. doi: 10.1016/j.cell.2024.06.041. Epub 2024 Jul 26.
5
Roles for CEP170 in cilia function and dynein-2 assembly.
J Cell Sci. 2024 Apr 15;137(8). doi: 10.1242/jcs.261816. Epub 2024 May 1.
6
Structure and tethering mechanism of dynein-2 intermediate chains in intraflagellar transport.
EMBO J. 2024 Apr;43(7):1257-1272. doi: 10.1038/s44318-024-00060-1. Epub 2024 Mar 7.
7
Structure and Function of Dynein's Non-Catalytic Subunits.
Cells. 2024 Feb 11;13(4):330. doi: 10.3390/cells13040330.
10
The molecular structure of IFT-A and IFT-B in anterograde intraflagellar transport trains.
Nat Struct Mol Biol. 2023 May;30(5):584-593. doi: 10.1038/s41594-022-00905-5. Epub 2023 Jan 2.

本文引用的文献

3
Structure of the dynein-2 complex and its assembly with intraflagellar transport trains.
Nat Struct Mol Biol. 2019 Sep;26(9):823-829. doi: 10.1038/s41594-019-0286-y. Epub 2019 Aug 26.
4
Acute Inhibition of Heterotrimeric Kinesin-2 Function Reveals Mechanisms of Intraflagellar Transport in Mammalian Cilia.
Curr Biol. 2019 Apr 1;29(7):1137-1148.e4. doi: 10.1016/j.cub.2019.02.043. Epub 2019 Mar 21.
7
Trafficking of ciliary membrane proteins by the intraflagellar transport/BBSome machinery.
Essays Biochem. 2018 Dec 7;62(6):753-763. doi: 10.1042/EBC20180030.
8
Ciliary Length Sensing Regulates IFT Entry via Changes in FLA8/KIF3B Phosphorylation to Control Ciliary Assembly.
Curr Biol. 2018 Aug 6;28(15):2429-2435.e3. doi: 10.1016/j.cub.2018.05.069. Epub 2018 Jul 26.
9
Interaction of heterotrimeric kinesin-II with IFT-B-connecting tetramer is crucial for ciliogenesis.
J Cell Biol. 2018 Aug 6;217(8):2867-2876. doi: 10.1083/jcb.201801039. Epub 2018 Jun 14.
10
Dynamics of the IFT machinery at the ciliary tip.
Elife. 2017 Sep 20;6:e28606. doi: 10.7554/eLife.28606.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验