Liu Ya-Tao, Liu Sheng, Li Guo-Ran, Gao Xue-Ping
Institute of New Energy Material Chemistry, School of Materials Science and Engineering, Renewable Energy Conversion and Storage Center, Nankai University, Tianjin, 300350, China.
Adv Mater. 2021 Feb;33(8):e2003955. doi: 10.1002/adma.202003955. Epub 2020 Dec 28.
Lithium-sulfur (Li-S) batteries hold the promise of the next generation energy storage system beyond state-of-the-art lithium-ion batteries. Despite the attractive gravimetric energy density (W ), the volumetric energy density (W ) still remains a great challenge for the practical application, based on the primary requirement of Small and Light for Li-S batteries. This review highlights the importance of cathode density, sulfur content, electroactivity in achieving high energy densities. In the first part, key factors are analyzed in a model on negative/positive ratio, cathode design, and electrolyte/sulfur ratio, orientated toward energy densities of 700 Wh L /500 Wh kg . Subsequently, recent progresses on enhancing W for coin/pouch cells are reviewed primarily on cathode. Especially, the "Three High One Low" (THOL) (high sulfur fraction, high sulfur loading, high density host, and low electrolyte quantity) is proposed as a feasible strategy for achieving high W , taking high W into consideration simultaneously. Meanwhile, host materials with desired catalytic activity should be paid more attention for fabricating high performance cathode. In the last part, key engineering technologies on manipulating the cathode porosity/density are discussed, including calendering and dry electrode coating. Finally, a future outlook is provided for enhancing both W and W of the Li-S batteries.
锂硫(Li-S)电池有望成为超越现有锂离子电池的下一代储能系统。尽管锂硫电池具有吸引人的重量能量密度(W ),但基于其对小型化和轻量化的首要要求,其体积能量密度(W )对于实际应用而言仍然是一个巨大的挑战。本综述强调了阴极密度、硫含量和电活性对于实现高能量密度的重要性。在第一部分中,针对能量密度为700 Wh L /500 Wh kg 的情况,在负极/正极比例、阴极设计和电解质/硫比例的模型中分析了关键因素。随后,主要围绕阴极综述了在提高硬币型/软包电池W 方面的最新进展。特别是,提出了“三高 一低”(THOL)(高硫含量、高硫负载量、高密度主体和低电解质用量)作为实现高W 同时兼顾高W 的可行策略。同时,在制造高性能阴极时应更加关注具有所需催化活性的主体材料。在最后一部分中,讨论了控制阴极孔隙率/密度的关键工程技术,包括压延和干电极涂层。最后,对提高锂硫电池的W 和W 给出了未来展望。