School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.
Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
J Am Chem Soc. 2021 Jan 13;143(1):149-162. doi: 10.1021/jacs.0c05408. Epub 2020 Dec 28.
Bimetallic nanocrystals often outperform their monometallic counterparts in catalysis as a result of the electronic coupling and geometric effect arising from two different metals. Here we report a facile synthesis of Pd-Cu Janus nanocrystals with controlled shapes through site-selected growth by reducing the Cu(II) precursor with glucose in the presence of hexadecylamine and Pd icosahedral seeds. Specifically, at a slow reduction rate, the Cu atoms nucleate and grow from one vertex of the icosahedral seed to form a penta-twinned Janus nanocrystal in the shape of a pentagonal bipyramid or decahedron. At a fast reduction rate, in contrast, the Cu atoms can directly nucleate from or diffuse to the edge of the icosahedral seed for the generation of a singly twinned Janus nanocrystal in the shape of a truncated bitetrahedron. The segregation of two elements and the presence of twin boundaries on the surface make the Pd-Cu Janus nanocrystals effective catalysts for the electrochemical reduction of CO. An onset potential as low as -0.7 V (RHE: reversible hydrogen electrode) was achieved for C products in 0.5 M KHCO solution, together with a faradaic efficiency approaching 51.0% at -1.0 V. Density functional theory and Pourbaix phase diagram studies demonstrated that the high CO coverage on the Pd sites (either metallic or hydride form) during electrocatalysis enabled the spillover of CO to the Cu sites toward subsequent C-C coupling, promoting the formation of C species. This work offers insights for the rational fabrication of bimetallic nanocrystals featuring desired compositions, shapes, and twin structures for catalytic applications.
双金属纳米晶体在催化中通常优于其单金属对应物,这是由于两种不同金属之间的电子耦合和几何效应。在这里,我们通过在十六胺存在下用葡萄糖还原 Cu(II)前体,在 Pd 二十面体种子的存在下,报道了一种通过位点选择生长来制备具有可控形状的 Pd-Cu 手性纳米晶体的简便方法。具体而言,在缓慢的还原速率下,Cu 原子从二十面体种子的一个顶点成核和生长,形成具有五重孪晶的五角双锥或十面体形状的五重孪晶手性纳米晶体。相比之下,在快速还原速率下,Cu 原子可以直接从或扩散到二十面体种子的边缘,从而生成具有单重孪晶的截角四面体形状的单重孪晶手性纳米晶体。两种元素的分离和表面上孪晶边界的存在使 Pd-Cu 手性纳米晶体成为电化学还原 CO 的有效催化剂。在 0.5 M KHCO3 溶液中,对于 C 产物,起始电位低至-0.7 V(RHE:可逆氢电极),在-1.0 V 时,法拉第效率接近 51.0%。密度泛函理论和 Pourbaix 相图研究表明,在电催化过程中,Pd 位点上(无论是金属态还是氢化物态)高 CO 覆盖率使 CO 向 Cu 位点溢出,从而促进 C-C 偶联,促进 C 物种的形成。这项工作为合理制备具有所需组成、形状和孪晶结构的双金属纳米晶体提供了见解,以用于催化应用。