Zhu Li, Liu Kang, Jingwei Li Huang, Mei Ziwen, Kang Yicui, Chen Qin, Wang Xiaojian, Zhang Hang, Zi Xin, Wang Qiyou, Fu Junwei, Pensa Evangelina, Stefancu Andrei, Liu Min, Cortés Emiliano
Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539 München, Germany.
Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University, Changsha 410083, Hunan, China.
J Am Chem Soc. 2025 Sep 10;147(36):33003-33009. doi: 10.1021/jacs.5c10517. Epub 2025 Aug 26.
Electrocatalysis enables the conversion of CO into value-added fuels and chemicals, offering a sustainable solution for greenhouse gas mitigation. However, achieving high selectivity for C2 products like ethylene (CH) remains challenging due to competing C1 pathways and complex multielectron processes. Here, we demonstrate that plasmon resonances can selectively enhance the electroreduction of CO to CH by 27.0% on a CuPd catalyst under LED illumination (625 nm) at -1.3 V. Photocurrent response, FTIR spectroscopy, and COMSOL simulations reveal that plasmon-derived hot electrons and heating greatly facilitate *CO formation at the CuPd interface, which diffuses to the Cu surface for subsequent C-C coupling. DFT calculations show that the increased *CO coverage on the Cu sites reduces the energy barrier for C-C coupling, ultimately enhancing CH generation. This work offers valuable mechanistic insights into plasmon-mediated electrocatalysis, guiding the development of more efficient plasmonic tandem electrocatalysts for future carbon recycling technologies.
电催化能够将一氧化碳转化为高附加值的燃料和化学品,为缓解温室气体问题提供了一种可持续的解决方案。然而,由于存在竞争性的C1路径和复杂的多电子过程,要实现对乙烯等C2产物的高选择性仍然具有挑战性。在此,我们证明了在-1.3 V的LED照明(625 nm)下,等离子体共振可以在CuPd催化剂上将CO的电还原选择性提高27.0%。光电流响应、傅里叶变换红外光谱和COMSOL模拟表明,等离子体衍生的热电子和加热极大地促进了CuPd界面处CO的形成,其扩散到Cu表面进行后续的C-C偶联。密度泛函理论计算表明,Cu位点上CO覆盖度的增加降低了C-C偶联的能垒,最终提高了乙烯的生成。这项工作为等离子体介导的电催化提供了有价值的机理见解,指导了未来碳循环技术中更高效的等离子体串联电催化剂的开发。