Suppr超能文献

在酒精使用障碍中,行为抑制的学习速度较慢。

Slower rates of learning to inhibit behavior in alcohol use disorder.

机构信息

Department of Psychological and Brain Sciences.

出版信息

Psychol Addict Behav. 2022 Feb;36(1):39-43. doi: 10.1037/adb0000599. Epub 2020 Dec 28.

Abstract

OBJECTIVE

Alcohol use disorder (AUD) is associated with passive avoidance learning (PAL) deficits. This study investigated PAL deficits in AUD by using a novel growth model approach to quantify patterns of PAL as changes in false alarms over time, rather than the typical index of total false alarms in a PAL task.

METHOD

Subjects, 112 (58 men; 54 women) with an AUD and 110 controls (44 men; 66 women), were administered a monetary incentive Go/No-Go task. Subjects could win $0.25 for a hit (response after a GO) or lose $0.25 for a false alarm.

RESULTS

PAL rate was quantified as the slope of initial learning phase (across the first 5 blocks) on the Go/No-Go task. The PAL curves indicated rapid learning in first 5 blocks followed by a later slower learning across blocks 6-9 (consolidation phase). A piecewise growth model with random intercepts indicated that AUD status was significantly associated with a slower initial PAL (i.e. learning phase), with B = -0.69, p < 0.001 for the control group and a PAL slope of 0.13 higher for the AUD group indicating a slower learning rate in the AUD group. This effect was not observed in the consolidation phase.

CONCLUSIONS

The results suggest that those with an AUD have greater difficulty learning to avoid negative consequences compared with controls. The results also suggest that measuring PAL rate by focusing on the rate of learning early in the task may be a better index of PAL learning than simply looking at overall false alarm rate. (PsycInfo Database Record (c) 2022 APA, all rights reserved).

摘要

目的

酒精使用障碍(AUD)与被动回避学习(PAL)缺陷有关。本研究通过使用一种新的增长模型方法来量化 PAL 缺陷,该方法通过随时间变化的虚报率来量化 PAL 模式,而不是通过 PAL 任务中的总虚报率来量化。

方法

112 名(58 名男性;54 名女性)患有 AUD 的受试者和 110 名对照者(44 名男性;66 名女性)接受了金钱激励 Go/No-Go 任务。受试者可以通过做出反应(GO 之后)赢得 0.25 美元,也可以因为虚报而输掉 0.25 美元。

结果

PAL 率被量化为 Go/No-Go 任务中初始学习阶段(前 5 个块)的斜率。PAL 曲线表明在前 5 个块中快速学习,然后在第 6-9 个块中较慢地学习(巩固阶段)。带有随机截距的分段增长模型表明,AUD 状态与较慢的初始 PAL(即学习阶段)显著相关,B=-0.69,p<0.001,对照组的 PAL 斜率为 0.13,AUD 组的 PAL 斜率较高,表明 AUD 组的学习速度较慢。这种影响在巩固阶段没有观察到。

结论

结果表明,与对照组相比,那些患有 AUD 的人在避免负面后果方面学习能力较差。研究结果还表明,通过关注任务早期的学习率来测量 PAL 率可能比仅仅观察总虚报率更好地反映 PAL 学习情况。

相似文献

本文引用的文献

1
Large-scale analysis of test-retest reliabilities of self-regulation measures.大规模分析自我调节措施的重测信度。
Proc Natl Acad Sci U S A. 2019 Mar 19;116(12):5472-5477. doi: 10.1073/pnas.1818430116. Epub 2019 Mar 6.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验