Suppr超能文献

将新技术和新方法应用于自我调节的本体论研究。

Applying novel technologies and methods to inform the ontology of self-regulation.

机构信息

Department of Psychology, Stanford University, Stanford, CA 94305, USA.

Department of Psychology, Stanford University, Stanford, CA 94305, USA.

出版信息

Behav Res Ther. 2018 Feb;101:46-57. doi: 10.1016/j.brat.2017.09.014. Epub 2017 Oct 5.

Abstract

Self-regulation is a broad construct representing the general ability to recruit cognitive, motivational and emotional resources to achieve long-term goals. This construct has been implicated in a host of health-risk behaviors, and is a promising target for fostering beneficial behavior change. Despite its clear importance, the behavioral, psychological and neural components of self-regulation remain poorly understood, which contributes to theoretical inconsistencies and hinders maximally effective intervention development. We outline a research program that seeks to define a neuropsychological ontology of self-regulation, articulating the cognitive components that compose self-regulation, their relationships, and their associated measurements. The ontology will be informed by two large-scale approaches to assessing individual differences: first purely behaviorally using data collected via Amazon's Mechanical Turk, then coupled with neuroimaging data collected from a separate population. To validate the ontology and demonstrate its utility, we will then use it to contextualize health risk behaviors in two exemplar behavioral groups: overweight/obese adults who binge eat and smokers. After identifying ontological targets that precipitate maladaptive behavior, we will craft interventions that engage these targets. If successful, this work will provide a structured, holistic account of self-regulation in the form of an explicit ontology, which will better clarify the pattern of deficits related to maladaptive health behavior, and provide direction for more effective behavior change interventions.

摘要

自我调节是一个广泛的概念,代表着招募认知、动机和情感资源以实现长期目标的一般能力。这个概念与许多健康风险行为有关,是培养有益行为改变的有前途的目标。尽管它非常重要,但自我调节的行为、心理和神经成分仍未得到很好的理解,这导致了理论上的不一致,并阻碍了最有效的干预措施的发展。我们概述了一个研究计划,旨在定义自我调节的神经心理学本体论,阐明构成自我调节的认知成分、它们之间的关系以及它们相关的测量方法。该本体论将通过两种大规模的评估个体差异的方法来提供信息:首先是纯粹通过亚马逊的 Mechanical Turk 收集的数据进行行为评估,然后再结合来自另一个人群的神经影像学数据。为了验证本体论并展示其效用,我们将使用它来分析两个典型行为群体中的健康风险行为:暴饮暴食的超重/肥胖成年人和吸烟者。在确定引发适应不良行为的本体论目标后,我们将制定干预措施来针对这些目标。如果成功,这项工作将以明确的本体论形式提供自我调节的结构化、整体描述,这将更好地阐明与适应不良健康行为相关的缺陷模式,并为更有效的行为改变干预措施提供指导。

相似文献

1
Applying novel technologies and methods to inform the ontology of self-regulation.
Behav Res Ther. 2018 Feb;101:46-57. doi: 10.1016/j.brat.2017.09.014. Epub 2017 Oct 5.
3
Targeting self-regulation to promote health behaviors in children.
Behav Res Ther. 2018 Feb;101:71-81. doi: 10.1016/j.brat.2017.09.008. Epub 2017 Sep 28.
5
Disordered eating behaviors and cardiometabolic risk among young adults with overweight or obesity.
Int J Eat Disord. 2018 Aug;51(8):931-941. doi: 10.1002/eat.22927. Epub 2018 Jul 21.
7
Implicit cognitive processes in binge-eating disorder and obesity.
J Behav Ther Exp Psychiatry. 2014 Jun;45(2):285-90. doi: 10.1016/j.jbtep.2014.01.001. Epub 2014 Jan 12.
9
Treatment of binge eating disorder.
Psychiatr Clin North Am. 2011 Dec;34(4):773-83. doi: 10.1016/j.psc.2011.08.011. Epub 2011 Oct 5.
10
Nutrition knowledge, attitudes, and self-regulation as predictors of overweight and obesity.
J Am Assoc Nurse Pract. 2019 Sep;31(9):502-510. doi: 10.1097/JXX.0000000000000169.

引用本文的文献

1
The measurement of self-regulation in the Adolescent Brain Cognitive Development (ABCD) Study.
PLoS One. 2025 May 5;20(5):e0322795. doi: 10.1371/journal.pone.0322795. eCollection 2025.
2
Adherence to a digital therapeutic mediates the relationship between momentary self-regulation and health risk behaviors.
Front Digit Health. 2025 Feb 4;7:1467772. doi: 10.3389/fdgth.2025.1467772. eCollection 2025.
4
Cognitive tasks, anatomical MRI, and functional MRI data evaluating the construct of self-regulation.
bioRxiv. 2023 Sep 29:2023.09.27.559869. doi: 10.1101/2023.09.27.559869.
5
Development of the Rural Perception Scale (RPS-18).
J Rural Health. 2024 Mar;40(2):348-367. doi: 10.1111/jrh.12795. Epub 2023 Sep 11.
6
Dynamic structural equation models with binary and ordinal outcomes in Mplus.
Behav Res Methods. 2024 Mar;56(3):1506-1532. doi: 10.3758/s13428-023-02107-3. Epub 2023 Apr 28.
7
Summary Intervals for Model-Based Classification Accuracy and Consistency Indices.
Educ Psychol Meas. 2023 Apr;83(2):240-261. doi: 10.1177/00131644221092347. Epub 2022 Apr 28.
10
Momentary Self-regulation: Scale Development and Preliminary Validation.
JMIR Ment Health. 2022 May 10;9(5):e35273. doi: 10.2196/35273.

本文引用的文献

1
Estimating psychological networks and their accuracy: A tutorial paper.
Behav Res Methods. 2018 Feb;50(1):195-212. doi: 10.3758/s13428-017-0862-1.
2
Developmental toxicity of nicotine: A transdisciplinary synthesis and implications for emerging tobacco products.
Neurosci Biobehav Rev. 2017 Jan;72:176-189. doi: 10.1016/j.neubiorev.2016.11.013. Epub 2016 Nov 24.
3
The Experiment Factory: Standardizing Behavioral Experiments.
Front Psychol. 2016 Apr 26;7:610. doi: 10.3389/fpsyg.2016.00610. eCollection 2016.
4
Diffusion Decision Model: Current Issues and History.
Trends Cogn Sci. 2016 Apr;20(4):260-281. doi: 10.1016/j.tics.2016.01.007. Epub 2016 Mar 5.
5
From Brain Maps to Cognitive Ontologies: Informatics and the Search for Mental Structure.
Annu Rev Psychol. 2016;67:587-612. doi: 10.1146/annurev-psych-122414-033729. Epub 2015 Sep 21.
6
On Integrating the Components of Self-Control.
Perspect Psychol Sci. 2015 Sep;10(5):618-38. doi: 10.1177/1745691615593382.
8
Neural correlates of expected risks and returns in risky choice across development.
J Neurosci. 2015 Jan 28;35(4):1549-60. doi: 10.1523/JNEUROSCI.1924-14.2015.
9
Cognitive control predicts use of model-based reinforcement learning.
J Cogn Neurosci. 2015 Feb;27(2):319-33. doi: 10.1162/jocn_a_00709.
10
A 5-trial adjusting delay discounting task: accurate discount rates in less than one minute.
Exp Clin Psychopharmacol. 2014 Jun;22(3):222-8. doi: 10.1037/a0035973. Epub 2014 Apr 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验