Suppr超能文献

多目标优化识别癌症选择性联合疗法。

Multiobjective optimization identifies cancer-selective combination therapies.

机构信息

Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.

Helsinki Institute for Information Technology (HIIT), Department of Computer Science, University of Helsinki, Helsinki, Finland.

出版信息

PLoS Comput Biol. 2020 Dec 28;16(12):e1008538. doi: 10.1371/journal.pcbi.1008538. eCollection 2020 Dec.

Abstract

Combinatorial therapies are required to treat patients with advanced cancers that have become resistant to monotherapies through rewiring of redundant pathways. Due to a massive number of potential drug combinations, there is a need for systematic approaches to identify safe and effective combinations for each patient, using cost-effective methods. Here, we developed an exact multiobjective optimization method for identifying pairwise or higher-order combinations that show maximal cancer-selectivity. The prioritization of patient-specific combinations is based on Pareto-optimization in the search space spanned by the therapeutic and nonselective effects of combinations. We demonstrate the performance of the method in the context of BRAF-V600E melanoma treatment, where the optimal solutions predicted a number of co-inhibition partners for vemurafenib, a selective BRAF-V600E inhibitor, approved for advanced melanoma. We experimentally validated many of the predictions in BRAF-V600E melanoma cell line, and the results suggest that one can improve selective inhibition of BRAF-V600E melanoma cells by combinatorial targeting of MAPK/ERK and other compensatory pathways using pairwise and third-order drug combinations. Our mechanism-agnostic optimization method is widely applicable to various cancer types, and it takes as input only measurements of a subset of pairwise drug combinations, without requiring target information or genomic profiles. Such data-driven approaches may become useful for functional precision oncology applications that go beyond the cancer genetic dependency paradigm to optimize cancer-selective combinatorial treatments.

摘要

组合疗法需要治疗那些由于冗余通路重排而对单药治疗产生耐药性的晚期癌症患者。由于潜在药物组合的数量巨大,因此需要采用系统的方法,使用具有成本效益的方法为每个患者确定安全有效的组合。在这里,我们开发了一种精确的多目标优化方法,用于识别具有最大癌症选择性的成对或更高阶组合。基于组合的治疗和非选择性效果在搜索空间中的 Pareto 优化来对患者特异性组合进行优先级排序。我们在 BRAF-V600E 黑色素瘤治疗的背景下展示了该方法的性能,其中预测的最优解决方案预测了许多用于治疗晚期黑色素瘤的选择性 BRAF-V600E 抑制剂维莫非尼的共抑制伙伴。我们在 BRAF-V600E 黑色素瘤细胞系中对许多预测进行了实验验证,结果表明,通过 MAPK/ERK 和其他补偿途径的成对和三阶药物组合的组合靶向,可以提高 BRAF-V600E 黑色素瘤细胞的选择性抑制。我们的这种基于机制的无偏优化方法广泛适用于各种癌症类型,并且仅需要测量一部分成对药物组合作为输入,而不需要目标信息或基因组图谱。这种基于数据的方法可能会成为超越癌症遗传依赖性范式的功能精准肿瘤学应用的有用工具,从而优化癌症选择性组合治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c52/7793282/09e5acfd3d69/pcbi.1008538.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验