文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于网络的药物组合预测。

Network-based prediction of drug combinations.

机构信息

Center for Complex Networks Research and Department of Physics, Northeastern University, Boston, MA, 02115, USA.

Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.

出版信息

Nat Commun. 2019 Mar 13;10(1):1197. doi: 10.1038/s41467-019-09186-x.


DOI:10.1038/s41467-019-09186-x
PMID:30867426
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6416394/
Abstract

Drug combinations, offering increased therapeutic efficacy and reduced toxicity, play an important role in treating multiple complex diseases. Yet, our ability to identify and validate effective combinations is limited by a combinatorial explosion, driven by both the large number of drug pairs as well as dosage combinations. Here we propose a network-based methodology to identify clinically efficacious drug combinations for specific diseases. By quantifying the network-based relationship between drug targets and disease proteins in the human protein-protein interactome, we show the existence of six distinct classes of drug-drug-disease combinations. Relying on approved drug combinations for hypertension and cancer, we find that only one of the six classes correlates with therapeutic effects: if the targets of the drugs both hit disease module, but target separate neighborhoods. This finding allows us to identify and validate antihypertensive combinations, offering a generic, powerful network methodology to identify efficacious combination therapies in drug development.

摘要

药物组合通过提高治疗效果和降低毒性,在治疗多种复杂疾病方面发挥着重要作用。然而,由于药物组合数量庞大以及剂量组合的影响,我们识别和验证有效组合的能力受到了限制。在这里,我们提出了一种基于网络的方法,用于识别针对特定疾病的临床有效的药物组合。通过量化人类蛋白质-蛋白质互作网络中药物靶点和疾病蛋白之间的基于网络的关系,我们展示了六种不同类型的药物-药物-疾病组合的存在。基于高血压和癌症的已批准药物组合,我们发现只有六种类型之一与治疗效果相关:如果药物的靶点都涉及疾病模块,但靶点位于不同的区域。这一发现使我们能够识别和验证抗高血压药物组合,为药物开发中识别有效的联合治疗方法提供了一种通用的、强大的网络方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fad3/6416394/164939027481/41467_2019_9186_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fad3/6416394/39f238f572c2/41467_2019_9186_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fad3/6416394/842c255105c9/41467_2019_9186_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fad3/6416394/164939027481/41467_2019_9186_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fad3/6416394/39f238f572c2/41467_2019_9186_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fad3/6416394/842c255105c9/41467_2019_9186_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fad3/6416394/164939027481/41467_2019_9186_Fig3_HTML.jpg

相似文献

[1]
Network-based prediction of drug combinations.

Nat Commun. 2019-3-13

[2]
Diffusion mapping of drug targets on disease signaling network elements reveals drug combination strategies.

Pac Symp Biocomput. 2018

[3]
Predicting drug synergy using a network propagation inspired machine learning framework.

Brief Funct Genomics. 2024-7-19

[4]
Prediction of triptolide targets in rheumatoid arthritis using network pharmacology and molecular docking.

Int Immunopharmacol. 2020-1-20

[5]
Using fixed-dose combination therapies to achieve blood pressure goals.

Clin Drug Investig. 2008

[6]
Network pharmacology for antiepileptogenesis: Tolerability and neuroprotective effects of novel multitargeted combination treatments in nonepileptic vs. post-status epilepticus mice.

Epilepsy Res. 2019-2-25

[7]
Screening drug target combinations in disease-related molecular networks.

BMC Bioinformatics. 2019-5-1

[8]
SynPathy: Predicting Drug Synergy through Drug-Associated Pathways Using Deep Learning.

Mol Cancer Res. 2022-5-4

[9]
[Principles of antihypertensive therapy in metabolic syndrome].

Klin Med (Mosk). 2013

[10]
Rationale for fixed-dose combinations in the treatment of hypertension: the cycle repeats.

Drugs. 2002

引用本文的文献

[1]
Knowledge-Informed Machine Learning for Cancer Diagnosis and Prognosis: A Review.

IEEE Trans Autom Sci Eng. 2025

[2]
PanThera: predictive analysis of higher-order combination therapies using deep neural networks.

Brief Bioinform. 2025-7-2

[3]
Literature data-based de novo candidates for drug repurposing.

BMC Bioinformatics. 2025-8-1

[4]
MD-Syn: synergistic drug combination prediction based on a multidimensional feature fusion method and attention mechanisms.

Front Pharmacol. 2025-7-14

[5]
Research on the proximity relationships of psychosomatic disease knowledge graph modules extracted by large language models.

Sci Rep. 2025-7-1

[6]
Understanding the molecular basis of herbal medicines for cough variant asthma under the guidance of traditional herbal theories.

Front Pharmacol. 2025-6-11

[7]
NetMedPy: a Python package for large-scale network medicine screening.

Bioinformatics. 2025-9-1

[8]
Drug Interaction Potential of Berberine Hydrochloride When Co-Administered with Tofacitinib and Filgotinib in Rats.

Drug Des Devel Ther. 2025-6-10

[9]
A PI3K Inhibitor with Low Cardiotoxicity and Its Synergistic Inhibitory Effect with Gilteritinib in Acute Myelogenous Leukemia (AML) Cells.

Molecules. 2025-5-27

[10]
Integrative Analysis of Drug Co-Prescriptions in Peritoneal Dialysis Reveals Molecular Targets and Novel Strategies for Intervention.

J Clin Med. 2025-5-26

本文引用的文献

[1]
Network-based approach to prediction and population-based validation of in silico drug repurposing.

Nat Commun. 2018-7-12

[2]
Putting the Patient Back Together - Social Medicine, Network Medicine, and the Limits of Reductionism.

N Engl J Med. 2017-12-21

[3]
Drug repurposing screens and synergistic drug-combinations for infectious diseases.

Br J Pharmacol. 2017-7-9

[4]
Trends in the market for antihypertensive drugs.

Nat Rev Drug Discov. 2017-5

[5]
Prediction of multidimensional drug dose responses based on measurements of drug pairs.

Proc Natl Acad Sci U S A. 2016-9-13

[6]
Overcoming EGFR(T790M) and EGFR(C797S) resistance with mutant-selective allosteric inhibitors.

Nature. 2016-6-2

[7]
Network-based in silico drug efficacy screening.

Nat Commun. 2016-2-1

[8]
Database resources of the National Center for Biotechnology Information.

Nucleic Acids Res. 2016-1-4

[9]
Effect of amiloride, or amiloride plus hydrochlorothiazide, versus hydrochlorothiazide on glucose tolerance and blood pressure (PATHWAY-3): a parallel-group, double-blind randomised phase 4 trial.

Lancet Diabetes Endocrinol. 2015-10-18

[10]
Combining genomic and network characteristics for extended capability in predicting synergistic drugs for cancer.

Nat Commun. 2015-9-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索