Suppr超能文献

基于网络的药物组合预测。

Network-based prediction of drug combinations.

机构信息

Center for Complex Networks Research and Department of Physics, Northeastern University, Boston, MA, 02115, USA.

Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.

出版信息

Nat Commun. 2019 Mar 13;10(1):1197. doi: 10.1038/s41467-019-09186-x.

Abstract

Drug combinations, offering increased therapeutic efficacy and reduced toxicity, play an important role in treating multiple complex diseases. Yet, our ability to identify and validate effective combinations is limited by a combinatorial explosion, driven by both the large number of drug pairs as well as dosage combinations. Here we propose a network-based methodology to identify clinically efficacious drug combinations for specific diseases. By quantifying the network-based relationship between drug targets and disease proteins in the human protein-protein interactome, we show the existence of six distinct classes of drug-drug-disease combinations. Relying on approved drug combinations for hypertension and cancer, we find that only one of the six classes correlates with therapeutic effects: if the targets of the drugs both hit disease module, but target separate neighborhoods. This finding allows us to identify and validate antihypertensive combinations, offering a generic, powerful network methodology to identify efficacious combination therapies in drug development.

摘要

药物组合通过提高治疗效果和降低毒性,在治疗多种复杂疾病方面发挥着重要作用。然而,由于药物组合数量庞大以及剂量组合的影响,我们识别和验证有效组合的能力受到了限制。在这里,我们提出了一种基于网络的方法,用于识别针对特定疾病的临床有效的药物组合。通过量化人类蛋白质-蛋白质互作网络中药物靶点和疾病蛋白之间的基于网络的关系,我们展示了六种不同类型的药物-药物-疾病组合的存在。基于高血压和癌症的已批准药物组合,我们发现只有六种类型之一与治疗效果相关:如果药物的靶点都涉及疾病模块,但靶点位于不同的区域。这一发现使我们能够识别和验证抗高血压药物组合,为药物开发中识别有效的联合治疗方法提供了一种通用的、强大的网络方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fad3/6416394/39f238f572c2/41467_2019_9186_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验