Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
Sci Total Environ. 2020 Dec 20;749:142049. doi: 10.1016/j.scitotenv.2020.142049. Epub 2020 Aug 31.
Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) and its primary metabolite, bis(1,3-dichloro-2-propyl) phosphate (BDCIPP) are frequently detected in aquatic environments. However, information regarding the biotoxicity of these compounds to bivalves is limited. We explored the multilevel physiological responses of Corbicula fluminea to TDCIPP and BDCIPP. The results indicated that TDCIPP/BDCIPP bioaccumulation in bivalves was positively correlated with their hydrophobicity. Furthermore, the higher body burden of TDCIPP in digestive glands led to significantly higher levels of ethoxyresorufin-O-deethylase (EROD), glutathione S-transferase (GST), and P-glycoprotein (p < 0.05). Owing to different molecular structures of inducers, upregulations of cyp4, gstm1, and abcb1 mRNA exhibited different sensitivities to TDCIPP and BDCIPP. Although Phase-I and Phase-II biotransformation and the multixenobiotic resistance (MXR) system were activated to protect bivalves from TDCIPP or BDCIPP, digestive glands produced large amounts of reactive oxygen species (ROS). Moreover, oxidative stress, the percentage of apoptotic cells in digestive glands, and inhibition of siphoning behaviour in TDCIPP treatments were higher than those in BDCIPP treatments (p < 0.05), indicating that TDCIPP was more toxic to bivalves than BDCIPP. Lower bioaccumulation and rapid metabolism of BDCIPP in vivo may contribute to alleviating its toxicity. This research establishes a foundation for further understanding the differences between the toxic mechanisms of TDCIPP and its metabolites.
磷酸三(1,3-二氯-2-丙基)酯(TDCIPP)及其主要代谢物双(1,3-二氯-2-丙基)磷酸酯(BDCIPP)经常在水生环境中被检测到。然而,关于这些化合物对双壳类动物的生物毒性的信息有限。我们研究了圆田螺对 TDCIPP 和 BDCIPP 的多层次生理反应。结果表明,双壳类动物体内 TDCIPP/BDCIPP 的生物积累与其疏水性呈正相关。此外,消化腺中 TDCIPP 的更高体负荷导致更高水平的乙氧基Resorufin-O-脱乙基酶(EROD)、谷胱甘肽 S-转移酶(GST)和 P-糖蛋白(p<0.05)。由于诱导剂的不同分子结构,cyp4、gstm1 和 abcb1 mRNA 的上调对 TDCIPP 和 BDCIPP 表现出不同的敏感性。尽管 Phase-I 和 Phase-II 生物转化和多药物抗性(MXR)系统被激活以保护双壳类动物免受 TDCIPP 或 BDCIPP 的侵害,但消化腺产生了大量的活性氧(ROS)。此外,在 TDCIPP 处理中,消化腺中的氧化应激、凋亡细胞的百分比和虹吸行为的抑制比在 BDCIPP 处理中更高(p<0.05),这表明 TDCIPP 对双壳类动物的毒性比 BDCIPP 更高。BDCIPP 在体内的低生物积累和快速代谢可能有助于减轻其毒性。这项研究为进一步了解 TDCIPP 及其代谢物的毒性机制差异奠定了基础。