文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Biodegradable Poly(Lactic Acid) Nanocomposites for Fused Deposition Modeling 3D Printing.

作者信息

Bardot Madison, Schulz Michael D

机构信息

Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA.

出版信息

Nanomaterials (Basel). 2020 Dec 21;10(12):2567. doi: 10.3390/nano10122567.


DOI:10.3390/nano10122567
PMID:33371307
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7767349/
Abstract

3D printing by fused deposition modelling (FDM) enables rapid prototyping and fabrication of parts with complex geometries. Unfortunately, most materials suitable for FDM 3D printing are non-degradable, petroleum-based polymers. The current ecological crisis caused by plastic waste has produced great interest in biodegradable materials for many applications, including 3D printing. Poly(lactic acid) (PLA), in particular, has been extensively investigated for FDM applications. However, most biodegradable polymers, including PLA, have insufficient mechanical properties for many applications. One approach to overcoming this challenge is to introduce additives that enhance the mechanical properties of PLA while maintaining FDM 3D printability. This review focuses on PLA-based nanocomposites with cellulose, metal-based nanoparticles, continuous fibers, carbon-based nanoparticles, or other additives. These additives impact both the physical properties and printability of the resulting nanocomposites. We also detail the optimal conditions for using these materials in FDM 3D printing. These approaches demonstrate the promise of developing nanocomposites that are both biodegradable and mechanically robust.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/804d/7767349/a97c850f9439/nanomaterials-10-02567-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/804d/7767349/79ff0b9da484/nanomaterials-10-02567-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/804d/7767349/d7ae6b9a4b2b/nanomaterials-10-02567-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/804d/7767349/92470520082a/nanomaterials-10-02567-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/804d/7767349/403302623aa9/nanomaterials-10-02567-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/804d/7767349/43ae867e74ba/nanomaterials-10-02567-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/804d/7767349/7e55d98e174d/nanomaterials-10-02567-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/804d/7767349/63d211b2a087/nanomaterials-10-02567-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/804d/7767349/a97c850f9439/nanomaterials-10-02567-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/804d/7767349/79ff0b9da484/nanomaterials-10-02567-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/804d/7767349/d7ae6b9a4b2b/nanomaterials-10-02567-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/804d/7767349/92470520082a/nanomaterials-10-02567-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/804d/7767349/403302623aa9/nanomaterials-10-02567-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/804d/7767349/43ae867e74ba/nanomaterials-10-02567-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/804d/7767349/7e55d98e174d/nanomaterials-10-02567-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/804d/7767349/63d211b2a087/nanomaterials-10-02567-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/804d/7767349/a97c850f9439/nanomaterials-10-02567-g009.jpg

相似文献

[1]
Biodegradable Poly(Lactic Acid) Nanocomposites for Fused Deposition Modeling 3D Printing.

Nanomaterials (Basel). 2020-12-21

[2]
3D Printing Biocompatible Polyurethane/Poly(lactic acid)/Graphene Oxide Nanocomposites: Anisotropic Properties.

ACS Appl Mater Interfaces. 2017-1-17

[3]
Printability, Mechanical and Thermal Properties of Poly(3-Hydroxybutyrate)-Poly(Lactic Acid)-Plasticizer Blends for Three-Dimensional (3D) Printing.

Materials (Basel). 2020-10-23

[4]
FDM Printability of PLA Based-Materials: The Key Role of the Rheological Behavior.

Polymers (Basel). 2022-4-26

[5]
FDM 3D Printing and Properties of PBAT/PLA Blends.

Polymers (Basel). 2024-4-18

[6]
Cellulose and Graphene Based Polyurethane Nanocomposites for FDM 3D Printing: Filament Properties and Printability.

Polymers (Basel). 2021-3-9

[7]
Improvement of Interlayer Adhesion and Heat Resistance of Biodegradable Ternary Blend Composite 3D Printing.

Polymers (Basel). 2021-2-27

[8]
Preparation and Characterization of Poly(butylene succinate)/Polylactide Blends for Fused Deposition Modeling 3D Printing.

ACS Omega. 2018-10-29

[9]
Optimization of the fused deposition modeling-based fabrication process for polylactic acid microneedles.

Microsyst Nanoeng. 2021-8-2

[10]
Properties of scaffolds prepared by fused deposition modeling of poly(hydroxyalkanoates).

Int J Biol Macromol. 2020-10-15

引用本文的文献

[1]
Three-dimensional printing in modern orthopedic trauma surgery: a comprehensive analysis of technical evolution and clinical translation.

Front Med (Lausanne). 2025-7-15

[2]
Current developments in 3D printing technology for orthopedic trauma: A review.

Medicine (Baltimore). 2025-3-21

[3]
High-Efficiency and Low-Resistance Melt-Blown/Electrospun PLA Composites for Air Filtration.

Polymers (Basel). 2025-2-6

[4]
FDM 3D Printing and Properties of WF/PBAT/PLA Composites.

Molecules. 2024-10-28

[5]
Accuracy of soy-based resins for dental 3D printing.

Angle Orthod. 2024-9-1

[6]
Let's Print an Ecology in 3D (and 4D).

Materials (Basel). 2024-5-7

[7]
The Interface Strengthening of Multi-Walled Carbon Nanotubes/Polylactic Acid Composites via the In-Loop Hybrid Manufacturing Method.

Polymers (Basel). 2023-11-16

[8]
The Upper Limb Orthosis in the Rehabilitation of Stroke Patients: The Role of 3D Printing.

Bioengineering (Basel). 2023-10-27

[9]
Recycling as a Key Enabler for Sustainable Additive Manufacturing of Polymer Composites: A Critical Perspective on Fused Filament Fabrication.

Polymers (Basel). 2023-10-25

[10]
Shape Memory Polymer Composites: 4D Printing, Smart Structures, and Applications.

Research (Wash D C). 2023-11-7

本文引用的文献

[1]
3D Printing PLA Waste to Produce Ceramic Based Particulate Reinforced Composite Using Abundant Silica-Sand: Mechanical Properties Characterization.

Polymers (Basel). 2020-11-3

[2]
Effect of Process Parameters on Tensile Mechanical Properties of 3D Printing Continuous Carbon Fiber-Reinforced PLA Composites.

Materials (Basel). 2020-8-31

[3]
Essential Nanostructure Parameters to Govern Reinforcement and Functionality of Poly(lactic) Acid Nanocomposites with Graphene and Carbon Nanotubes for 3D Printing Application.

Polymers (Basel). 2020-5-26

[4]
Effects of Magnesium Oxide (MgO) Shapes on In Vitro and In Vivo Degradation Behaviors of PLA/MgO Composites in Long Term.

Polymers (Basel). 2020-5-8

[5]
Three-Dimensional Printing of Continuous Flax Fiber-Reinforced Thermoplastic Composites by Five-Axis Machine.

Materials (Basel). 2020-4-3

[6]
Micrometer Copper-Zinc Alloy Particles-Reinforced Wood Plastic Composites with High Gloss and Antibacterial Properties for 3D Printing.

Polymers (Basel). 2020-3-9

[7]
Morpho-Structural, Thermal and Mechanical Properties of PLA/PHB/Cellulose Biodegradable Nanocomposites Obtained by Compression Molding, Extrusion, and 3D Printing.

Nanomaterials (Basel). 2019-12-24

[8]
Microstructure and Mechanical Performance of 3D Printed Wood-PLA/PHA Using Fused Deposition Modelling: Effect of Printing Temperature.

Polymers (Basel). 2019-10-29

[9]
Effect of Porosity and Crystallinity on 3D Printed PLA Properties.

Polymers (Basel). 2019-9-12

[10]
Nanocarbon/Poly(Lactic) Acid for 3D Printing: Effect of Fillers Content on Electromagnetic and Thermal Properties.

Materials (Basel). 2019-7-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索