Suppr超能文献

慢性阻塞性肺疾病中使用身体机能指标进行心血管风险预测:一项多中心观察性研究的结果

Cardiovascular risk prediction using physical performance measures in COPD: results from a multicentre observational study.

作者信息

Fermont Jilles M, Fisk Marie, Bolton Charlotte E, MacNee William, Cockcroft John R, Fuld Jonathan, Cheriyan Joseph, Mohan Divya, Mäki-Petäjä Kaisa M, Al-Hadithi Ali B, Tal-Singer Ruth, Müllerova Hana, Polkey Michael I, Wood Angela M, McEniery Carmel M, Wilkinson Ian B

机构信息

Division of Experimental Medicine and Immunotherapeutics, Department of Medicine, University of Cambridge, Cambridge, UK

British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.

出版信息

BMJ Open. 2020 Dec 28;10(12):e038360. doi: 10.1136/bmjopen-2020-038360.

Abstract

OBJECTIVES

Although cardiovascular disease (CVD) is a common comorbidity associated with chronic obstructive pulmonary disease (COPD), it is unknown how to improve prediction of cardiovascular (CV) risk in individuals with COPD. Traditional CV risk scores have been tested in different populations but not uniquely in COPD. The potential of alternative markers to improve CV risk prediction in individuals with COPD is unknown. We aimed to determine the predictive value of conventional CVD risk factors in COPD and to determine if additional markers improve prediction beyond conventional factors.

DESIGN

Data from the Evaluation of the Role of Inflammation in Chronic Airways disease cohort, which enrolled 729 individuals with Global Initiative for Chronic Obstructive Lung Disease (GOLD) stage II-IV COPD were used. Linked hospital episode statistics and survival data were prospectively collected for a median 4.6 years of follow-up.

SETTING

Five UK centres interested in COPD.

PARTICIPANTS

Population-based sample including 714 individuals with spirometry-defined COPD, smoked at least 10 pack years and who were clinically stable for >4 weeks.

INTERVENTIONS

Baseline measurements included aortic pulse wave velocity (aPWV), carotid intima-media thickness (CIMT), C reactive protein (CRP), fibrinogen, spirometry and Body mass index, airflow Obstruction, Dyspnoea and Exercise capacity (BODE) Index, 6 min walk test (6MWT) and 4 m gait speed (4MGS) test.

PRIMARY AND SECONDARY OUTCOME MEASURES

New occurrence (first event) of fatal or non-fatal hospitalised CVD, and all-cause and cause-specific mortality.

RESULTS

Out of 714 participants, 192 (27%) had CV hospitalisation and 6 died due to CVD. The overall CV risk model C-statistic was 0.689 (95% CI 0.688 to 0.691). aPWV and CIMT neither had an association with study outcome nor improved model prediction. CRP, fibrinogen, GOLD stage, BODE Index, 4MGS and 6MWT were associated with the outcome, independently of conventional risk factors (p<0.05 for all). However, only 6MWT improved model discrimination (C=0.727, 95% CI 0.726 to 0.728).

CONCLUSION

Poor physical performance defined by the 6MWT improves prediction of CV hospitalisation in individuals with COPD.

TRIAL REGISTRATION NUMBER

ID 11101.

摘要

目的

虽然心血管疾病(CVD)是与慢性阻塞性肺疾病(COPD)相关的常见合并症,但尚不清楚如何改善对COPD患者心血管(CV)风险的预测。传统的CV风险评分已在不同人群中进行了测试,但未在COPD患者中进行专门测试。尚不清楚替代标志物在改善COPD患者CV风险预测方面的潜力。我们旨在确定COPD中传统CVD危险因素的预测价值,并确定额外的标志物是否能在传统因素之外改善预测。

设计

使用慢性气道疾病炎症作用评估队列的数据,该队列纳入了729例全球慢性阻塞性肺疾病倡议(GOLD)II-IV期COPD患者。前瞻性收集相关医院病历统计数据和生存数据,中位随访时间为4.6年。

地点

英国五个对COPD感兴趣的中心。

参与者

基于人群的样本,包括714例通过肺活量测定定义为COPD、吸烟至少10包年且临床稳定超过4周的患者。

干预措施

基线测量包括主动脉脉搏波速度(aPWV)、颈动脉内膜中层厚度(CIMT)、C反应蛋白(CRP)、纤维蛋白原、肺活量测定以及体重指数、气流阻塞、呼吸困难和运动能力(BODE)指数、6分钟步行试验(6MWT)和4米步速(4MGS)试验。

主要和次要结局指标

致命或非致命住院CVD的新发病例(首次事件),以及全因死亡率和特定病因死亡率。

结果

在714名参与者中,192例(27%)有心血管住院史,6例死于CVD。总体CV风险模型的C统计量为0.689(95%CI 0.688至0.691)。aPWV和CIMT与研究结局均无关联,也未改善模型预测。CRP、纤维蛋白原、GOLD分期、BODE指数、4MGS和6MWT与结局相关,独立于传统危险因素(所有p<0.05)。然而,只有6MWT改善了模型判别能力(C=0.727,95%CI 0.726至0.728)。

结论

由6MWT定义的身体机能不佳可改善对COPD患者心血管住院的预测。

试验注册号

ID 11101。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6f1/7772292/c8f8c18ae939/bmjopen-2020-038360f01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验