Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853.
Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853.
Proc Natl Acad Sci U S A. 2021 Jan 12;118(2). doi: 10.1073/pnas.2012071118.
The physiochemical nature of reactive metal electrodeposits during the early stages of electrodeposition is rarely studied but known to play an important role in determining the electrochemical stability and reversibility of electrochemical cells that utilize reactive metals as anodes. We investigated the early-stage growth dynamics and reversibility of electrodeposited lithium in liquid electrolytes infused with brominated additives. On the basis of equilibrium theories, we hypothesize that by regulating the surface energetics and surface ion/adatom transport characteristics of the interphases formed on Li, Br-rich electrolytes alter the morphology of early-stage Li electrodeposits; enabling late-stage control of growth and high electrode reversibility. A combination of scanning electron microscopy (SEM), image analysis, X-ray photoelectron spectroscopy (XPS), electrochemical impedance spectroscopy (EIS), and contact angle goniometry are employed to evaluate this hypothesis by examining the physical-chemical features of the material phases formed on Li. We report that it is possible to achieve fine control of the early-stage Li electrodeposit morphology through tuning of surface energetic and ion diffusion properties of interphases formed on Li. This control is shown further to translate to better control of Li electrodeposit morphology and high electrochemical reversibility during deep cycling of the Li metal anode. Our results show that understanding and eliminating morphological and chemical instabilities in the initial stages of Li electroplating via deliberately modifying energetics of the solid electrolyte interphase (SEI) is a feasible approach in realization of deeply cyclable reactive metal batteries.
在电沉积的早期阶段,反应性金属电沉积物的物理化学性质很少被研究,但已知在确定利用反应性金属作为阳极的电化学电池的电化学稳定性和可逆性方面起着重要作用。我们研究了在含有溴化添加剂的液体电解质中电镀锂的早期生长动力学和可逆性。基于平衡理论,我们假设通过调节在 Li 上形成的相间的表面能和表面离子/原子输运特性,富含 Br 的电解质改变了早期 Li 电沉积的形态;从而实现后期对生长的控制和高电极可逆性。扫描电子显微镜 (SEM)、图像分析、X 射线光电子能谱 (XPS)、电化学阻抗谱 (EIS) 和接触角测量等组合方法用于通过检查在 Li 上形成的材料相的物理化学特性来评估该假设。我们报告说,通过调整在 Li 上形成的相间的表面能和离子扩散特性,有可能实现对早期 Li 电沉积物形态的精细控制。进一步表明,这种控制可以更好地控制 Li 金属阳极深循环期间的 Li 电沉积物形态和高电化学可逆性。我们的结果表明,通过有目的地修饰固体电解质中间相 (SEI) 的能量学来理解和消除 Li 电镀初始阶段的形态和化学不稳定性,是实现可深度循环的反应性金属电池的一种可行方法。