Hui Zeyu, Yu Sicen, Wang Shen, Hyun Gayea, Holoubek John, Zhou Ke, Nicolas Jenny, Liu Mengchen, Miao Qiushi, Tan Shuangjie, Petrova Victoria, Lin Haichen, Zhou Jianbin, Liu Haodong, Liu Ping
Aiiso Yufeng Li Family Department of Nanoengineering, University of California, San Diego, La Jolla, CA, USA.
Program of Material Science, University of California, San Diego, La Jolla, CA, USA.
Nat Chem. 2025 Aug 14. doi: 10.1038/s41557-025-01911-y.
Understanding the lithium nucleation and growth process is crucial for improving lithium metal battery performance. Here we investigate the roles of the lithium-electrolyte and lithium-substrate interfaces during the lithium nucleation process. Using a physics-based model, we identify which of the two interfaces controls lithium nucleation for different electrolytes and substrates. Sluggish lithium transport through the solid-electrolyte interphases (SEIs) and slow charge-transfer kinetics make the nucleation process SEI controlled and substrate independent, while substrate properties control lithium nucleation in a system having fast SEI transport and charge-transfer reactions. For substrate-controlled nucleation, we derive a model that elucidates the need for fast lithium adatom velocity along the substrate that outpaces the critical nuclei formation. We also reveal that lithium nucleation modes have a strong impact on lithium plating/stripping reversibility. Simultaneous fast transport through the SEIs and fast lithium adatom movement on the substrate are essential for achieving dense lithium deposition and long-cycle-life lithium metal batteries.
了解锂的成核和生长过程对于提高锂金属电池性能至关重要。在此,我们研究了锂成核过程中锂-电解质界面和锂-基底界面的作用。使用基于物理的模型,我们确定了对于不同的电解质和基底,这两个界面中的哪一个控制锂的成核。锂通过固体电解质界面(SEI)的传输缓慢以及电荷转移动力学缓慢,使得成核过程受SEI控制且与基底无关,而在具有快速SEI传输和电荷转移反应的系统中,基底性质控制锂的成核。对于受基底控制的成核,我们推导了一个模型,该模型阐明了沿基底的快速锂吸附原子速度超过临界核形成的必要性。我们还揭示了锂的成核模式对锂的电镀/脱镀可逆性有很大影响。通过SEI的同时快速传输以及锂吸附原子在基底上的快速移动对于实现致密的锂沉积和长循环寿命的锂金属电池至关重要。