Chair of Neuroimaging, Faculty of Psychology, Technische Universität Dresden, 01062, Dresden, Germany.
Chair of General Psychology, Faculty of Psychology, Technische Universität Dresden, 01062, Dresden, Germany.
Cogn Affect Behav Neurosci. 2021 Jun;21(3):509-533. doi: 10.3758/s13415-020-00837-x. Epub 2020 Dec 28.
Cognitive control is typically understood as a set of mechanisms that enable humans to reach goals that require integrating the consequences of actions over longer time scales. Importantly, using routine behaviour or making choices beneficial only at short time scales would prevent one from attaining these goals. During the past two decades, researchers have proposed various computational cognitive models that successfully account for behaviour related to cognitive control in a wide range of laboratory tasks. As humans operate in a dynamic and uncertain environment, making elaborate plans and integrating experience over multiple time scales is computationally expensive. Importantly, it remains poorly understood how uncertain consequences at different time scales are integrated into adaptive decisions. Here, we pursue the idea that cognitive control can be cast as active inference over a hierarchy of time scales, where inference, i.e., planning, at higher levels of the hierarchy controls inference at lower levels. We introduce the novel concept of meta-control states, which link higher-level beliefs with lower-level policy inference. Specifically, we conceptualize cognitive control as inference over these meta-control states, where solutions to cognitive control dilemmas emerge through surprisal minimisation at different hierarchy levels. We illustrate this concept using the exploration-exploitation dilemma based on a variant of a restless multi-armed bandit task. We demonstrate that beliefs about contexts and meta-control states at a higher level dynamically modulate the balance of exploration and exploitation at the lower level of a single action. Finally, we discuss the generalisation of this meta-control concept to other control dilemmas.
认知控制通常被理解为一组机制,使人类能够实现需要在更长时间尺度上整合行动后果的目标。重要的是,仅使用常规行为或仅在短时间尺度上做出有益的选择,将阻止人们实现这些目标。在过去的二十年中,研究人员提出了各种计算认知模型,这些模型成功地解释了在广泛的实验室任务中与认知控制相关的行为。由于人类在动态和不确定的环境中运行,制定详尽的计划并在多个时间尺度上整合经验在计算上是昂贵的。重要的是,人们对不同时间尺度上不确定的后果如何整合到适应性决策中仍然知之甚少。在这里,我们提出了这样一种观点,即认知控制可以被视为在时间尺度层次结构上的主动推理,其中较高层次的推理(即规划)控制较低层次的推理。我们引入了元控制状态的新概念,它将较高层次的信念与较低层次的策略推理联系起来。具体来说,我们将认知控制概念化为对这些元控制状态的推理,其中通过在不同层次上最小化惊讶度来解决认知控制困境。我们使用基于不安分多臂赌博机任务变体的探索-开发困境来说明这个概念。我们证明,较高层次的上下文和元控制状态的信念可以动态地调节单个动作较低层次的探索和开发之间的平衡。最后,我们讨论了这种元控制概念在其他控制困境中的推广。