Suppr超能文献

随机删失情形下的稳健 Wald 型检验。

Robust Wald-type tests under random censoring.

作者信息

Ghosh Abhik, Basu Ayanendranath, Pardo Leandro

机构信息

Interdisciplinary Statistical Research Unit, Indian Statistical Institute, Kolkata, India.

Department of Statistics and Operations Research I, Complutense University of Madrid, Madrid, Spain.

出版信息

Stat Med. 2021 Feb 28;40(5):1285-1305. doi: 10.1002/sim.8841. Epub 2020 Dec 28.

Abstract

Randomly censored survival data are frequently encountered in biomedical or reliability applications and clinical trial analyses. Testing the significance of statistical hypotheses is crucial in such analyses to get conclusive inference but the existing likelihood-based tests, under a fully parametric model, are extremely nonrobust against outliers in the data. Although there exists a few robust estimators given randomly censored data, there is hardly any robust testing procedure available in the literature in this context. One of the major difficulties here is the construction of a suitable consistent estimator of the asymptotic variance of robust estimators, since the latter is a function of the unknown censoring distribution. In this article, we take the first step in this direction by proposing a consistent estimator of asymptotic variance of the M-estimators based on randomly censored data without any assumption on the censoring scheme. We then describe and study a class of robust Wald-type tests for parametric statistical hypothesis, both simple as well as composite, under such a set-up. Robust tests for comparing two independent randomly censored samples and robust tests against one sided alternatives are also discussed. Their advantages and usefulness are demonstrated for the tests based on the minimum density power divergence estimators and illustrated with clinical trials and other medical data.

摘要

在生物医学、可靠性应用以及临床试验分析中,经常会遇到随机删失的生存数据。在这类分析中,检验统计假设的显著性对于得出结论性推断至关重要,但在完全参数模型下,现有的基于似然的检验对数据中的异常值极其不稳健。尽管针对随机删失数据存在一些稳健估计量,但在这种情况下,文献中几乎没有任何稳健的检验程序。这里的一个主要困难是构建稳健估计量渐近方差的合适一致估计量,因为后者是未知删失分布的函数。在本文中,我们朝着这个方向迈出了第一步,提出了一种基于随机删失数据的M估计量渐近方差的一致估计量,且不对删失方案做任何假设。然后,我们描述并研究了在这种设定下针对参数统计假设(包括简单假设和复合假设)的一类稳健的 Wald 型检验。还讨论了用于比较两个独立随机删失样本的稳健检验以及针对单侧备择假设的稳健检验。基于最小密度功率散度估计量的检验展示了它们的优势和实用性,并通过临床试验及其他医学数据进行了说明。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验