Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
Department of Life Science, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
Small. 2021 Jan;17(4):e2005925. doi: 10.1002/smll.202005925. Epub 2020 Dec 29.
Optical fibers made of polymeric materials possess high flexibility that can potentially integrate with flexible electronic devices to realize complex functions in biology and neurology. Here, a multichannel flexible device based on four individually addressable optical fibers transfer-printed with flexible electronic components and controlled by a wireless circuit is developed. The resulting device offers excellent mechanics that is compatible with soft and curvilinear tissues, and excellent diversity through switching different light sources. The combined configuration of optical fibers and flexible electronics allows optical stimulation in selective wavelengths guided by the optical fibers, while conducting distributed, high-throughput biopotential sensing using the flexible microelectrode arrays. The device has been demonstrated in vivo with rats through optical stimulation and simultaneously monitoring of spontaneous/evoked spike signals and local field potentials using 32 microelectrodes in four brain regions. Biocompatibility of the device has been characterized by behavior and immunohistochemistry studies, demonstrating potential applications of the device in long-term animal studies. The techniques to integrate flexible electronics with optical fibers may inspire the development of more flexible optoelectronic devices for sophisticated applications in biomedicine and biology.
基于聚合物材料的光纤具有很高的柔韧性,可与柔性电子设备集成,从而在生物学和神经科学中实现复杂功能。在这里,开发了一种基于四通道可单独寻址光纤的多通道柔性器件,该光纤采用柔性电子组件进行转移打印,并通过无线电路进行控制。该器件具有出色的机械性能,与柔软和弯曲的组织兼容,并且通过切换不同的光源具有出色的多样性。光纤和柔性电子的组合结构允许通过光纤引导的选择性波长的光刺激,同时使用柔性微电极阵列进行分布式、高通量的生物电势感测。该器件已在大鼠体内进行了演示,通过在四个脑区的 32 个微电极上进行光刺激和自发/诱发尖峰信号以及局部场电位的同时监测。通过行为和免疫组织化学研究对该器件的生物相容性进行了表征,证明了该器件在长期动物研究中的潜在应用。将柔性电子设备与光纤集成的技术可能会激发更多用于生物医学和生物学中复杂应用的柔性光电设备的发展。