Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, United States of America.
J Neural Eng. 2018 Aug;15(4):046008. doi: 10.1088/1741-2552/aabc94. Epub 2018 Apr 9.
The convergence of optogenetic and large-scale neural recording technologies opens enormous opportunities for studying brain function. However, compared to the widespread use of optogenetics or recordings as standalone methods, the joint use of these techniques in behaving animals is much less well developed. A simple but poorly scalable solution has been to implant conventional optical fibers together with extracellular microelectrodes. A more promising approach has been to combine microfabricated light emission sources with multielectrode arrays. However, a challenge remains in how to compactly and scalably integrate optical output and electronic readout structures on the same device. Here we took a step toward addressing this issue by using nanofabrication techniques to develop a novel implantable optoelectronic probe.
This device contains multiple photonic grating couplers connected with waveguides for out-of-plane light emission, monolithically integrated with a microlectrode array on the same silicon substrate. To demonstrate the device's operation in vivo, we record cortical activity from awake head-restrained mice.
We first characterize photo-stimulation effects on electrophysiological signals. We then assess the probe's ability to both optogenetically stimulate and electrically record neural firing.
This device relies on nanofabrication techniques to integrate optical stimulation and electrical readout functions on the same structure. Due to the device miniaturization capabilities inherent to nanofabrication, this optoelectronic probe technology can be further scaled to increase the throughput of manipulating and recording neural dynamics.
光遗传学和大规模神经记录技术的融合为研究大脑功能提供了巨大的机会。然而,与光遗传学或记录技术作为独立方法的广泛应用相比,这些技术在行为动物中的联合使用还远未得到充分发展。一种简单但扩展性差的解决方案是将传统光纤与细胞外微电极一起植入。一种更有前途的方法是将微制造的发光源与多电极阵列相结合。然而,如何在同一设备上紧凑且可扩展地集成光学输出和电子读取结构仍然是一个挑战。在这里,我们通过使用纳米制造技术来开发一种新型可植入光电探针,朝着解决这个问题迈出了一步。
该设备包含多个光子光栅耦合器,通过波导与平面外光发射连接,与同一硅衬底上的微电极阵列单片集成。为了在体内演示该设备的操作,我们从清醒的头部固定的小鼠中记录皮质活动。
我们首先对光电刺激对电生理信号的影响进行了特征描述。然后评估了该探头同时进行光遗传刺激和电记录神经放电的能力。
该设备依赖于纳米制造技术,在同一结构上集成光学刺激和电读取功能。由于纳米制造固有的器件小型化能力,这种光电探针技术可以进一步扩展,以增加操纵和记录神经动力学的吞吐量。