Suppr超能文献

基于组织特异性网络的杏仁核影像学表型全基因组研究,以鉴定功能相互作用模块。

Tissue-specific network-based genome wide study of amygdala imaging phenotypes to identify functional interaction modules.

机构信息

Department of BioHealth Informatics, Indiana University School of Informatics & Computing, Indianapolis, IN 46202, USA.

Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA.

出版信息

Bioinformatics. 2017 Oct 15;33(20):3250-3257. doi: 10.1093/bioinformatics/btx344.

Abstract

MOTIVATION

Network-based genome-wide association studies (GWAS) aim to identify functional modules from biological networks that are enriched by top GWAS findings. Although gene functions are relevant to tissue context, most existing methods analyze tissue-free networks without reflecting phenotypic specificity.

RESULTS

We propose a novel module identification framework for imaging genetic studies using the tissue-specific functional interaction network. Our method includes three steps: (i) re-prioritize imaging GWAS findings by applying machine learning methods to incorporate network topological information and enhance the connectivity among top genes; (ii) detect densely connected modules based on interactions among top re-prioritized genes; and (iii) identify phenotype-relevant modules enriched by top GWAS findings. We demonstrate our method on the GWAS of [18F]FDG-PET measures in the amygdala region using the imaging genetic data from the Alzheimer's Disease Neuroimaging Initiative, and map the GWAS results onto the amygdala-specific functional interaction network. The proposed network-based GWAS method can effectively detect densely connected modules enriched by top GWAS findings. Tissue-specific functional network can provide precise context to help explore the collective effects of genes with biologically meaningful interactions specific to the studied phenotype.

AVAILABILITY AND IMPLEMENTATION

The R code and sample data are freely available at http://www.iu.edu/shenlab/tools/gwasmodule/.

CONTACT

shenli@iu.edu.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

基于网络的全基因组关联研究(GWAS)旨在从生物网络中识别出由顶级 GWAS 发现富集的功能模块。尽管基因功能与组织背景相关,但大多数现有的方法分析无组织网络,而没有反映表型特异性。

结果

我们提出了一种新的基于组织特异性功能相互作用网络的成像遗传研究模块识别框架。我们的方法包括三个步骤:(i)通过应用机器学习方法来整合网络拓扑信息和增强顶级基因之间的连通性,重新优先考虑成像 GWAS 发现;(ii)根据顶级重新优先化基因之间的相互作用检测密集连接的模块;(iii)识别由顶级 GWAS 发现富集的与表型相关的模块。我们使用来自阿尔茨海默病神经影像学倡议的成像遗传数据,在杏仁核区域的 [18F]FDG-PET 测量的 GWAS 上演示了我们的方法,并将 GWAS 结果映射到杏仁核特异性功能相互作用网络上。所提出的基于网络的 GWAS 方法可以有效地检测由顶级 GWAS 发现富集的密集连接模块。组织特异性功能网络可以提供精确的背景,有助于探索具有生物学意义的基因的集体效应,这些基因具有针对所研究表型的特定的生物相互作用。

可用性和实现

R 代码和示例数据可在 http://www.iu.edu/shenlab/tools/gwasmodule/ 上免费获得。

联系人

shenli@iu.edu

补充信息

补充数据可在 Bioinformatics 在线获得。

相似文献

引用本文的文献

8
Brain Imaging Genomics: Integrated Analysis and Machine Learning.脑成像基因组学:综合分析与机器学习
Proc IEEE Inst Electr Electron Eng. 2020 Jan;108(1):125-162. doi: 10.1109/JPROC.2019.2947272. Epub 2019 Oct 29.
9
Regional imaging genetic enrichment analysis.区域影像遗传学富集分析。
Bioinformatics. 2020 Apr 15;36(8):2554-2560. doi: 10.1093/bioinformatics/btz948.

本文引用的文献

5
Innate immunity in Alzheimer's disease.阿尔茨海默病的固有免疫。
Nat Immunol. 2015 Mar;16(3):229-36. doi: 10.1038/ni.3102.
8
Blood platelets in the progression of Alzheimer's disease.血小板在阿尔茨海默病进展中的作用
PLoS One. 2014 Feb 28;9(2):e90523. doi: 10.1371/journal.pone.0090523. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验