Department of Neurogenetics and Molecular Medicine-IPER, Institut de Recerca Sant Joan de Déu (IRSJD), Barcelona 08950, Spain.
Department of Neurogenetics and Molecular Medicine, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona 08950, Spain.
Hum Mol Genet. 2021 Jan 21;29(22):3589-3605. doi: 10.1093/hmg/ddaa243.
Mutations in the GDAP1 gene cause Charcot-Marie-Tooth (CMT) neuropathy. GDAP1 is an atypical glutathione S-transferase (GST) of the outer mitochondrial membrane and the mitochondrial membrane contacts with the endoplasmic reticulum (MAMs). Here, we investigate the role of this GST in the autophagic flux and the membrane contact sites (MCSs) between mitochondria and lysosomes in the cellular pathophysiology of GDAP1 deficiency. We demonstrate that GDAP1 participates in basal autophagy and that its depletion affects LC3 and PI3P biology in autophagosome biogenesis and membrane trafficking from MAMs. GDAP1 also contributes to the maturation of lysosome by interacting with PYKfyve kinase, a pH-dependent master lysosomal regulator. GDAP1 deficiency causes giant lysosomes with hydrolytic activity, a delay in the autophagic lysosome reformation, and TFEB activation. Notably, we found that GDAP1 interacts with LAMP-1, which supports that GDAP1-LAMP-1 is a new tethering pair of mitochondria and lysosome membrane contacts. We observed mitochondria-lysosome MCSs in soma and axons of cultured mouse embryonic motor neurons and human neuroblastoma cells. GDAP1 deficiency reduces the MCSs between these organelles, causes mitochondrial network abnormalities, and decreases levels of cellular glutathione (GSH). The supply of GSH-MEE suffices to rescue the lysosome membranes and the defects of the mitochondrial network, but not the interorganelle MCSs nor early autophagic events. Overall, we show that GDAP1 enables the proper function of mitochondrial MCSs in both degradative and nondegradative pathways, which could explain primary insults in GDAP1-related CMT pathophysiology, and highlights new redox-sensitive targets in axonopathies where mitochondria and lysosomes are involved.
GDAP1 基因突变导致夏科-马里-图什病(CMT)神经病。GDAP1 是外线粒体膜和线粒体与内质网(MAMs)接触的非典型谷胱甘肽 S-转移酶(GST)。在这里,我们研究了这种 GST 在 GDAP1 缺乏的细胞病理生理学中自噬流和线粒体与溶酶体之间的膜接触位点(MCS)中的作用。我们证明 GDAP1 参与基础自噬,其耗竭会影响 LC3 和 PI3P 生物学在自噬体生物发生和从 MAMs 进行膜运输。GDAP1 还通过与 PYKfyve 激酶相互作用促进溶酶体成熟,PYKfyve 激酶是一种依赖 pH 的主要溶酶体调节剂。GDAP1 缺乏会导致溶酶体具有水解活性的巨溶酶体、自噬溶酶体再形成延迟和 TFEB 激活。值得注意的是,我们发现 GDAP1 与 LAMP-1 相互作用,这支持了 GDAP1-LAMP-1 是线粒体和溶酶体膜接触的新连接对。我们观察到培养的小鼠胚胎运动神经元和人神经母细胞瘤细胞的体和轴突中的线粒体-溶酶体 MCS。GDAP1 缺乏会减少这些细胞器之间的 MCS,导致线粒体网络异常,并降低细胞谷胱甘肽(GSH)水平。GSH-MEE 的供应足以挽救溶酶体膜和线粒体网络的缺陷,但不能挽救细胞器间 MCS 或早期自噬事件。总的来说,我们表明 GDAP1 使线粒体 MCS 在降解和非降解途径中都能正常发挥功能,这可以解释 GDAP1 相关 CMT 病理生理学中的主要损伤,并强调了涉及线粒体和溶酶体的轴突病变中的新的氧化还原敏感靶点。