Suppr超能文献

全固态可重构介电纳米结构中的可调手性光学

Tunable Chiral Optics in All-Solid-Phase Reconfigurable Dielectric Nanostructures.

机构信息

Materials Science and Engineering Program, Texas Materials Institute, and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States.

Photonics Initiative, Advanced Science Research Center and Graduate Center, City University of New York, New York, New York 10075, United States.

出版信息

Nano Lett. 2021 Jan 27;21(2):973-979. doi: 10.1021/acs.nanolett.0c03957. Epub 2020 Dec 29.

Abstract

Subwavelength nanostructures with tunable compositions and geometries show favorable optical functionalities for the implementation of nanophotonic systems. Precise and versatile control of structural configurations on solid substrates is essential for their applications in on-chip devices. Here, we report all-solid-phase reconfigurable chiral nanostructures with silicon nanoparticles and nanowires as the building blocks in which the configuration and chiroptical response can be tailored on-demand by dynamic manipulation of the silicon nanoparticle. We reveal that the optical chirality originates from the handedness-dependent coupling between optical resonances of the silicon nanoparticle and the silicon nanowire via numerical simulations and coupled-mode theory analysis. Furthermore, the coexisting electric and magnetic resonances support strong enhancement of optical near-field chirality, which enables label-free enantiodiscrimination of biomolecules in single nanostructures. Our results not only provide insight into the design of functional high-index materials but also bring new strategies to develop adaptive devices for photonic and electronic applications.

摘要

具有可调组成和几何形状的亚波长纳米结构为实现纳米光子系统提供了有利的光学功能。在固体衬底上精确和多功能地控制结构配置对于它们在片上器件中的应用至关重要。在这里,我们报告了全固态可重构手性纳米结构,其构建块为硅纳米颗粒和纳米线,通过动态操纵硅纳米颗粒,可按需调整其结构和手性响应。我们通过数值模拟和耦合模理论分析揭示了光学手性源于硅纳米颗粒和硅纳米线之间的光共振的手性相关耦合。此外,共存的电和磁共振支持光学近场手性的强烈增强,这使得能够在单个纳米结构中对生物分子进行无标记的对映体选择性检测。我们的结果不仅为功能高折射率材料的设计提供了深入的了解,而且为开发用于光子和电子应用的自适应器件带来了新的策略。

相似文献

2
Nanophotonic Platforms for Chiral Sensing and Separation.用于手性传感和分离的纳米光子学平台。
Acc Chem Res. 2020 Mar 17;53(3):588-598. doi: 10.1021/acs.accounts.9b00460. Epub 2020 Jan 8.
3
Plasmonic Metamaterials for Nanochemistry and Sensing.用于纳米化学与传感的表面等离激元超材料
Acc Chem Res. 2019 Nov 19;52(11):3018-3028. doi: 10.1021/acs.accounts.9b00325. Epub 2019 Nov 4.
7
Reconfigurable nanomechanical photonic metamaterials.可重构纳米机械光子超材料。
Nat Nanotechnol. 2016 Jan;11(1):16-22. doi: 10.1038/nnano.2015.302.
9
10
Nanophotonic Approaches for Chirality Sensing.用于手性传感的纳米光子学方法。
ACS Nano. 2021 Oct 26;15(10):15538-15566. doi: 10.1021/acsnano.1c04992. Epub 2021 Oct 5.

引用本文的文献

6
Photothermal Nanomaterials: A Powerful Light-to-Heat Converter.光热纳米材料:一种强大的光热转换材料。
Chem Rev. 2023 Jun 14;123(11):6891-6952. doi: 10.1021/acs.chemrev.3c00159. Epub 2023 May 3.

本文引用的文献

2
Reconfigurable Plasmonic Chirality: Fundamentals and Applications.可重构等离子体手性:基础与应用
Adv Mater. 2020 Oct;32(41):e1905640. doi: 10.1002/adma.201905640. Epub 2020 Feb 20.
5
All-optical reconfigurable chiral meta-molecules.全光可重构手性超分子
Mater Today (Kidlington). 2019 May;25:10-20. doi: 10.1016/j.mattod.2019.02.015. Epub 2019 Mar 9.
6
A rotary plasmonic nanoclock.一种旋转等离子体纳米钟。
Nat Commun. 2019 Nov 27;10(1):5394. doi: 10.1038/s41467-019-13444-3.
10
Sensing Picomolar Concentrations of RNA Using Switchable Plasmonic Chirality.利用可切换等离子体手性感应皮摩尔浓度的 RNA。
Angew Chem Int Ed Engl. 2018 Oct 8;57(41):13495-13498. doi: 10.1002/anie.201807029. Epub 2018 Sep 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验