Kollipara Pavana Siddhartha, Mahendra Ritvik, Li Jingang, Zheng Yuebing
Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas, USA.
Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas, USA.
Aggregate (Hoboken). 2022 Aug;3(4). doi: 10.1002/agt2.189. Epub 2022 Mar 8.
Developing on-chip functional devices requires reliable fabrication methods with high resolution for miniaturization, desired components for enhanced performance, and high throughput for fast prototyping and mass production. Recently, laser-based bubble-pen lithography (BPL) has been developed to enable sub-micron linewidths, in situ synthesis of custom materials, and on-demand patterning for various functional components and devices. BPL exploits Marangoni convection induced by a laser-controlled microbubble to attract, accumulate, and immobilize particles, ions, and molecules onto different substrates. Recent years have witnessed tremendous progress in theory, engineering, and application of BPL, which motivated us to write this review. First, an overview of experimental demonstrations and theoretical understandings of BPL is presented. Next, we discuss the advantages of BPL and its diverse applications in quantum dot displays, biological and chemical sensing, clinical diagnosis, nanoalloy synthesis, and microrobotics. We conclude this review with our perspective on the challenges and future directions of BPL.
开发片上功能器件需要可靠的制造方法,这些方法要具备高分辨率以实现小型化、有用于增强性能的理想组件以及高产量以实现快速原型制作和大规模生产。最近,基于激光的气泡笔光刻技术(BPL)已被开发出来,以实现亚微米线宽、定制材料的原位合成以及对各种功能组件和器件的按需图案化。BPL利用激光控制的微气泡诱导的马兰戈尼对流,将颗粒、离子和分子吸引、聚集并固定在不同的基板上。近年来,BPL在理论、工程和应用方面取得了巨大进展,这促使我们撰写这篇综述。首先,对BPL的实验演示和理论理解进行概述。接下来,我们讨论BPL的优势及其在量子点显示、生物和化学传感、临床诊断、纳米合金合成和微型机器人技术中的多种应用。我们以对BPL面临的挑战和未来方向的看法来结束这篇综述。