Neubrech Frank, Hentschel Mario, Liu Na
Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120, Heidelberg, Germany.
Max Planck Institute for Intelligent Systems, Heissenbergstraße 3, 70569, Stuttgart, Germany.
Adv Mater. 2020 Oct;32(41):e1905640. doi: 10.1002/adma.201905640. Epub 2020 Feb 20.
Molecular chirality is a geometric property that is of great importance in chemistry, biology, and medicine. Recently, plasmonic nanostructures that exhibit distinct chiroptical responses have attracted tremendous interest, given their ability to emulate the properties of chiral molecules with tailored and pronounced optical characteristics. However, the optical chirality of such human-made structures is in general static and cannot be manipulated postfabrication. Herein, different concepts to reconfigure the chiroptical responses of plasmonic nano- and micro-objects are outlined. Depending on the utilized strategies and stimuli, the chiroptical signature, the 3D structural conformation, or both can be reconfigured. Optical devices based on plasmonic nanostructures with reconfigurable chirality possess great potential in practical applications, ranging from polarization conversion elements to enantioselective analysis, chiral sensing, and catalysis.
分子手性是一种几何特性,在化学、生物学和医学中具有重要意义。近来,表现出独特手性光学响应的等离子体纳米结构因其能够模拟具有定制化且显著光学特性的手性分子的性质而引起了极大关注。然而,此类人造结构的光学手性通常是静态的,且在制造后无法进行操控。在此概述了用于重新配置等离子体纳米和微米物体手性光学响应的不同概念。根据所采用的策略和刺激因素,手性光学特征、三维结构构象或两者均可被重新配置。基于具有可重构手性的等离子体纳米结构的光学器件在实际应用中具有巨大潜力,涵盖从偏振转换元件到对映体选择性分析、手性传感及催化等领域。