Suppr超能文献

肾上腺脑白质营养不良模型系统的演变。

Evolution of adrenoleukodystrophy model systems.

机构信息

Department of Pediatric Neurology, Emma Children's Hospital, Amsterdam UMC, Amsterdam Leukodystrophy Center, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, The Netherlands.

Department of Child and Youth Psychiatry, Amsterdam UMC, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.

出版信息

J Inherit Metab Dis. 2021 May;44(3):544-553. doi: 10.1002/jimd.12357. Epub 2021 Jan 7.

Abstract

X-linked adrenoleukodystrophy (ALD) is a neurometabolic disorder affecting the adrenal glands, testes, spinal cord and brain. The disease is caused by mutations in the ABCD1 gene resulting in a defect in peroxisomal degradation of very long-chain fatty acids and their accumulation in plasma and tissues. Males with ALD have a near 100% life-time risk to develop myelopathy. The life-time prevalence to develop progressive cerebral white matter lesions (known as cerebral ALD) is about 60%. Adrenal insufficiency occurs in about 80% of male patients. In adulthood, 80% of women with ALD also develop myelopathy, but adrenal insufficiency or cerebral ALD are very rare. The complex clinical presentation and the absence of a genotype-phenotype correlation are complicating our understanding of the disease. In an attempt to understand the pathophysiology of ALD various model systems have been developed. While these model systems share the basic genetics and biochemistry of ALD they fail to fully recapitulate the complex neurodegenerative etiology of ALD. Each model system recapitulates certain aspects of the disorder. This exposes the complexity of ALD and therefore the challenge to create a comprehensive model system to fully understand ALD. In this review, we provide an overview of the different ALD modeling strategies from single-celled to multicellular organisms and from in vitro to in vivo approaches, and introduce how emerging iPSC-derived technologies could improve the understanding of this highly complex disorder.

摘要

X 连锁肾上腺脑白质营养不良(ALD)是一种影响肾上腺、睾丸、脊髓和大脑的神经代谢疾病。该疾病是由 ABCD1 基因突变引起的,导致过氧化物酶体降解极长链脂肪酸的缺陷和它们在血浆和组织中的积累。ALD 男性患者几乎有 100%的终生风险发展为脊髓病。大约 60%的患者会终生发展为进行性脑白质病变(称为脑 ALD)。大约 80%的男性患者会出现肾上腺功能不全。在成年期,80%的女性 ALD 患者也会发展为脊髓病,但肾上腺功能不全或脑 ALD 非常罕见。复杂的临床表现和基因型-表型相关性的缺乏使我们对该疾病的理解变得复杂。为了了解 ALD 的病理生理学,已经开发了各种模型系统。虽然这些模型系统具有 ALD 的基本遗传学和生物化学特征,但它们不能完全再现 ALD 复杂的神经退行性病因。每个模型系统都能再现疾病的某些方面。这暴露了 ALD 的复杂性,因此创建一个全面的模型系统来全面了解 ALD 是一个挑战。在这篇综述中,我们概述了从单细胞到多细胞生物以及从体外到体内方法的不同 ALD 建模策略,并介绍了新兴的 iPSC 衍生技术如何改善对这种高度复杂疾病的理解。

相似文献

1
Evolution of adrenoleukodystrophy model systems.
J Inherit Metab Dis. 2021 May;44(3):544-553. doi: 10.1002/jimd.12357. Epub 2021 Jan 7.
2
X-linked adrenoleukodystrophy and primary adrenal insufficiency.
Front Endocrinol (Lausanne). 2023 Nov 16;14:1309053. doi: 10.3389/fendo.2023.1309053. eCollection 2023.
3
Adrenoleukodystrophy.
Handb Clin Neurol. 2024;204:133-138. doi: 10.1016/B978-0-323-99209-1.00022-3.
4
[X-linked adrenoleukodystrophy].
Ann Endocrinol (Paris). 2007 Dec;68(6):403-11. doi: 10.1016/j.ando.2007.04.002. Epub 2007 May 29.
5
Adrenoleukodystrophy - neuroendocrine pathogenesis and redefinition of natural history.
Nat Rev Endocrinol. 2016 Oct;12(10):606-15. doi: 10.1038/nrendo.2016.90. Epub 2016 Jun 17.
6
In vivo adenine base editing rescues adrenoleukodystrophy in a humanized mouse model.
Mol Ther. 2024 Jul 3;32(7):2190-2206. doi: 10.1016/j.ymthe.2024.05.027. Epub 2024 May 24.
8
Novel Gene Mutation in a Korean Patient with X-Linked Adrenoleukodystrophy Presenting with Addison's Disease.
Endocrinol Metab (Seoul). 2020 Mar;35(1):188-191. doi: 10.3803/EnM.2020.35.1.188.
9
ABC subfamily D proteins and very long chain fatty acid metabolism as novel targets in adrenoleukodystrophy.
Curr Drug Targets. 2011 May;12(5):694-706. doi: 10.2174/138945011795378577.
10
X-linked adrenoleukodystrophy: pathogenesis and treatment.
Curr Neurol Neurosci Rep. 2014 Oct;14(10):486. doi: 10.1007/s11910-014-0486-0.

引用本文的文献

1
Revisiting the Pathogenesis of X-Linked Adrenoleukodystrophy.
Genes (Basel). 2025 May 17;16(5):590. doi: 10.3390/genes16050590.
2
Development of a rabbit model for adrenoleukodystrophy: A pilot study on gene therapy using rAAV9.
Mol Ther Nucleic Acids. 2025 Feb 3;36(1):102469. doi: 10.1016/j.omtn.2025.102469. eCollection 2025 Mar 11.
3
Modelling Peroxisomal Disorders in Zebrafish.
Cells. 2025 Jan 20;14(2):147. doi: 10.3390/cells14020147.
5
The pathology of X-linked adrenoleukodystrophy: tissue specific changes as a clue to pathophysiology.
Orphanet J Rare Dis. 2024 Mar 28;19(1):138. doi: 10.1186/s13023-024-03105-0.
6
The peroxisome: an update on mysteries 3.0.
Histochem Cell Biol. 2024 Feb;161(2):99-132. doi: 10.1007/s00418-023-02259-5. Epub 2024 Jan 20.
7
Mouse Models to Study Peroxisomal Functions and Disorders: Overview, Caveats, and Recommendations.
Methods Mol Biol. 2023;2643:469-500. doi: 10.1007/978-1-0716-3048-8_34.
8
The Role of Oxidative Stress and Inflammation in X-Link Adrenoleukodystrophy.
Front Nutr. 2022 Apr 8;9:864358. doi: 10.3389/fnut.2022.864358. eCollection 2022.

本文引用的文献

1
Multi-Omic Approach to Identify Phenotypic Modifiers Underlying Cerebral Demyelination in X-Linked Adrenoleukodystrophy.
Front Cell Dev Biol. 2020 Jun 25;8:520. doi: 10.3389/fcell.2020.00520. eCollection 2020.
2
Loss- or Gain-of-Function Mutations in ACOX1 Cause Axonal Loss via Different Mechanisms.
Neuron. 2020 May 20;106(4):589-606.e6. doi: 10.1016/j.neuron.2020.02.021. Epub 2020 Mar 12.
3
The peroxisomal fatty acid transporter ABCD1/PMP-4 is required in the C. elegans hypodermis for axonal maintenance: A worm model for adrenoleukodystrophy.
Free Radic Biol Med. 2020 May 20;152:797-809. doi: 10.1016/j.freeradbiomed.2020.01.177. Epub 2020 Feb 1.
5
Disease progression in women with X-linked adrenoleukodystrophy is slow.
Orphanet J Rare Dis. 2019 Feb 7;14(1):30. doi: 10.1186/s13023-019-1008-6.
6
Neurological diseases at the blood-brain barrier: Stemming new scientific paradigms using patient-derived induced pluripotent cells.
Biochim Biophys Acta Mol Basis Dis. 2020 Apr 1;1866(4):165358. doi: 10.1016/j.bbadis.2018.12.009. Epub 2018 Dec 26.
7
Autophagy regulates glucose-mediated root meristem activity by modulating ROS production in Arabidopsis.
Autophagy. 2019 Mar;15(3):407-422. doi: 10.1080/15548627.2018.1520547. Epub 2018 Sep 22.
9
Etiology and treatment of adrenoleukodystrophy: new insights from .
Dis Model Mech. 2018 Jun 15;11(6):dmm031286. doi: 10.1242/dmm.031286.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验