Singh Ajay Vikram, Maharjan Romi-Singh, Kanase Anurag, Siewert Katherina, Rosenkranz Daniel, Singh Rishabh, Laux Peter, Luch Andreas
Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany.
Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States.
ACS Appl Mater Interfaces. 2021 Jan 13;13(1):1943-1955. doi: 10.1021/acsami.0c18470. Epub 2020 Dec 29.
In an nanotoxicity system, cell-nanoparticle (NP) interaction leads to the surface adsorption, uptake, and changes into nuclei/cell phenotype and chemistry, as an indicator of oxidative stress, genotoxicity, and carcinogenicity. Different types of nanomaterials and their chemical composition or "corona" have been widely studied in context with nanotoxicology. However, rare reports are available, which delineate the details of the cell shape index (CSI) and nuclear area factors (NAFs) as a descriptor of the type of nanomaterials. In this paper, we propose a machine-learning-based graph modeling and correlation-establishing approach using tight junction protein ZO-1-mediated alteration in the cell/nuclei phenotype to quantify and propose it as indices of cell-NP interactions. We believe that the phenotypic variation (CSI and NAF) in the epithelial cell is governed by the physicochemical descriptors (, shape, size, zeta potential, concentration, diffusion coefficients, polydispersity, and so on) of the different classes of nanomaterials, which critically determines the intracellular uptake or cell membrane interactions when exposed to the epithelial cells at sub-lethal concentrations. The intrinsic and extrinsic physicochemical properties of the representative nanomaterials (NMs) were measured using optical (dynamic light scattering, NP tracking analysis) methods to create a set of nanodescriptors contributing to cell-NM interactions phenotype adjustments. We used correlation function as a machine-learning algorithm to successfully predict cell and nuclei shapes and polarity functions as phenotypic markers for five different classes of nanomaterials studied herein this report. The CSI and NAF as nanodescriptors can be used as intuitive cell phenotypic parameters to define the safety of nanomaterials extensively used in consumer products and nanomedicine.
在纳米毒性系统中,细胞与纳米颗粒(NP)的相互作用会导致表面吸附、摄取,并引起细胞核/细胞表型及化学性质的变化,这些变化可作为氧化应激、遗传毒性和致癌性的指标。不同类型的纳米材料及其化学成分或“冠层”已在纳米毒理学背景下得到广泛研究。然而,关于将细胞形状指数(CSI)和核面积因子(NAF)作为纳米材料类型描述符的详细报道却很少。在本文中,我们提出了一种基于机器学习的图形建模和相关性建立方法,该方法利用紧密连接蛋白ZO - 1介导的细胞/细胞核表型改变来量化,并将其作为细胞 - NP相互作用的指标。我们认为上皮细胞中的表型变化(CSI和NAF)受不同类纳米材料的物理化学描述符(如形状、大小、zeta电位、浓度、扩散系数、多分散性等)的支配,当以亚致死浓度暴露于上皮细胞时,这些描述符会决定性地影响细胞内摄取或细胞膜相互作用。使用光学方法(动态光散射、NP跟踪分析)测量了代表性纳米材料(NMs)的内在和外在物理化学性质,以创建一组有助于细胞 - NM相互作用表型调整的纳米描述符。我们使用相关函数作为机器学习算法,成功预测了细胞和细胞核的形状以及极性函数,作为本报告中研究的五种不同类纳米材料的表型标记。CSI和NAF作为纳米描述符可作为直观的细胞表型参数,用于定义广泛应用于消费品和纳米医学中的纳米材料的安全性。