Suppr超能文献

基于具有理论保证的进化算法的集合包装优化。

Set Packing Optimization by Evolutionary Algorithms with Theoretical Guarantees.

作者信息

Jin Youzhen, Xia Xiaoyun, Wang Zijia, Peng Xue, Zhang Jun, Liao Weizhi

机构信息

School of Information Science and Engineering, Jiaxing University, Jiaxing 314001, China.

School of Computer Science and Cyber Engineering, Guangzhou University, Guangzhou 510006, China.

出版信息

Biomimetics (Basel). 2024 Sep 27;9(10):586. doi: 10.3390/biomimetics9100586.

Abstract

The set packing problem is a core NP-complete combinatorial optimization problem which aims to find the maximum collection of disjoint sets from a given collection of sets, , over a ground set, . Evolutionary algorithms (EAs) have been widely used as general-purpose global optimization methods and have shown promising performance for the set packing problem. While most previous studies are mainly based on experimentation, there is little theoretical investigation available in this area. In this study, we analyze the approximation performance of simplified versions of EAs, specifically the (1+1) EA, for the set packing problem from a theoretical perspective. Our analysis demonstrates that the (1+1) EA can provide an approximation guarantee in solving the -set packing problem. Additionally, we construct a problem instance and prove that the (1+1) EA beats the local search algorithm on this specific instance. This proof reveals that evolutionary algorithms can have theoretical guarantees for solving NP-hard optimization problems.

摘要

集合包装问题是一个核心的NP完全组合优化问题,其目标是从给定的一组集合中找到在基础集上互不相交集合的最大集合。进化算法(EAs)已被广泛用作通用的全局优化方法,并且在集合包装问题上表现出了良好的性能。虽然之前的大多数研究主要基于实验,但该领域几乎没有理论研究。在本研究中,我们从理论角度分析了进化算法的简化版本,特别是(1+1)进化算法,对于集合包装问题的近似性能。我们的分析表明,(1+1)进化算法在解决k-集合包装问题时可以提供近似保证。此外,我们构造了一个问题实例,并证明(1+1)进化算法在这个特定实例上优于局部搜索算法。这一证明揭示了进化算法在解决NP难优化问题时可以有理论保证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7583/11504854/bc43e5199b1e/biomimetics-09-00586-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验