Cheng Yannan, Huo Yuanfang, Yu Yongle, Duan Ping, Dong Xianzhen, Yu Zirui, Cheng Qiang, Dai Honglian, Pan Zhenyu
Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan, 430070, China.
Mater Today Bio. 2024 Aug 10;28:101180. doi: 10.1016/j.mtbio.2024.101180. eCollection 2024 Oct.
Managing bone defects remains a formidable clinical hurdle, primarily attributed to the inadequate orchestration of vascular reconstruction and osteogenic differentiation in both spatial and temporal dimensions. This challenge persists due to the constrained availability of autogenous grafts and the limited regenerative capacity of allogeneic or synthetic bone substitutes, thus necessitating continual exploration and innovation in the realm of functional and bioactive bone graft materials. While synthetic scaffolds have emerged as promising carriers for bone grafts, their efficacy is curtailed by deficiencies in vascularization and osteoinductive potential. Nitric oxide (NO) plays a key role in revascularization and bone tissue regeneration, yet studies related to the use of NO for the treatment of bone defects remain scarce. Herein, we present a pioneering approach leveraging a photothermal-responsive system to augment NO release. This system comprises macromolecular mPEG-P nanoparticles encapsulating indocyanine green (ICG) (NO-NPs@ICG) and a mPEG-PA-PP injectable thermosensitive hydrogel carrier. By harnessing the synergistic photothermal effects of near-infrared radiation and ICG, the system achieves sustained NO release, thereby activating the soluble guanylate cyclase (SGC)-cyclic guanosine monophosphate (cGMP) signaling pathway both in vitro and in vivo. This orchestrated cascade culminates in the facilitation of angiogenesis and osteogenesis, thus expediting the reparative processes in bone defects. In a nutshell, the NO release-responsive system elucidated in this study presents a pioneering avenue for refining the bone tissue microenvironment and fostering enhanced bone regeneration.
处理骨缺损仍然是一个严峻的临床难题,主要归因于在空间和时间维度上血管重建和成骨分化的协调不足。由于自体移植物的可用性受限以及同种异体或合成骨替代物的再生能力有限,这一挑战持续存在,因此需要在功能性和生物活性骨移植材料领域不断探索和创新。虽然合成支架已成为有前景的骨移植载体,但其功效因血管化和骨诱导潜力的不足而受到限制。一氧化氮(NO)在血管再生和骨组织修复中起关键作用,但有关使用NO治疗骨缺损的研究仍然很少。在此,我们提出一种利用光热响应系统来增强NO释放的开创性方法。该系统由包裹吲哚菁绿(ICG)的大分子mPEG-P纳米颗粒(NO-NPs@ICG)和mPEG-PA-PP可注射热敏水凝胶载体组成。通过利用近红外辐射和ICG的协同光热效应,该系统实现了NO的持续释放,从而在体外和体内激活可溶性鸟苷酸环化酶(SGC)-环磷酸鸟苷(cGMP)信号通路。这种精心编排的级联反应最终促进了血管生成和成骨作用,从而加速了骨缺损的修复过程。简而言之,本研究中阐明的NO释放响应系统为改善骨组织微环境和促进增强的骨再生提供了一条开创性途径。