Frutiger Andreas, Gatterdam Karl, Blickenstorfer Yves, Reichmuth Andreas Michael, Fattinger Christof, Vörös János
Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, University and ETH Zürich, 8092 Zürich, Switzerland.
Institute of Structural Biology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany.
Sensors (Basel). 2020 Dec 22;21(1):9. doi: 10.3390/s21010009.
Label-free optical biosensors are an invaluable tool for molecular interaction analysis. Over the past 30 years, refractometric biosensors and, in particular, surface plasmon resonance have matured to the standard of this field despite a significant cross reactivity to environmental and experimental noise sources. In this paper, we demonstrate that sensors that apply the spatial affinity lock-in principle (part I) and perform readout by diffraction overcome the drawbacks of established refractometric biosensors. We show this with a direct comparison of the cover refractive index jump sensitivity as well as the surface mass resolution of an unstabilized diffractometric biosensor with a state-of-the-art Biacore 8k. A combined refractometric diffractometric biosensor demonstrates that a refractometric sensor requires a much higher measurement precision than the diffractometric to achieve the same resolution. In a conceptual and quantitative discussion, we elucidate the physical reasons behind and define the figure of merit of diffractometric biosensors. Because low-precision unstabilized diffractometric devices achieve the same resolution as bulky stabilized refractometric sensors, we believe that label-free optical sensors might soon move beyond the drug discovery lab as miniaturized, mass-produced environmental/medical sensors. In fact, combined with the right surface chemistry and recognition element, they might even bring the senses of smell/taste to our smart devices.
无标记光学生物传感器是用于分子相互作用分析的宝贵工具。在过去30年中,折射型生物传感器,尤其是表面等离子体共振技术,尽管对环境和实验噪声源存在显著的交叉反应,但已发展成熟并成为该领域的标准技术。在本文中,我们证明了应用空间亲和力锁定原理(第一部分)并通过衍射进行读出的传感器克服了现有折射型生物传感器的缺点。我们通过直接比较未稳定化的衍射型生物传感器与最先进的Biacore 8k的覆盖折射率跃变灵敏度以及表面质量分辨率来证明这一点。一种组合式折射 - 衍射型生物传感器表明,折射型传感器要达到与衍射型传感器相同的分辨率,需要更高的测量精度。在概念性和定量讨论中,我们阐明了衍射型生物传感器背后的物理原因并定义了其品质因数。由于低精度的未稳定化衍射型设备能够达到与大型稳定化折射型传感器相同的分辨率,我们相信无标记光传感器可能很快会超越药物研发实验室,成为小型化、大规模生产的环境/医疗传感器。事实上,结合合适的表面化学和识别元件,它们甚至可能为我们的智能设备带来嗅觉/味觉。