文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用机器学习辅助决策支持模型预测前列腺癌根治术时活检Gleason分级组的升级情况。

Predicting Prostate Cancer Upgrading of Biopsy Gleason Grade Group at Radical Prostatectomy Using Machine Learning-Assisted Decision-Support Models.

作者信息

Liu Hailang, Tang Kun, Peng Ejun, Wang Liang, Xia Ding, Chen Zhiqiang

机构信息

Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, People's Republic of China.

Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, People's Republic of China.

出版信息

Cancer Manag Res. 2020 Dec 22;12:13099-13110. doi: 10.2147/CMAR.S286167. eCollection 2020.


DOI:10.2147/CMAR.S286167
PMID:33376402
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7765752/
Abstract

OBJECTIVE: This study aimed to develop a machine learning (ML)-assisted model capable of accurately predicting the probability of biopsy Gleason grade group upgrading before making treatment decisions. METHODS: We retrospectively collected data from prostate cancer (PCa) patients. Four ML-assisted models were developed from 16 clinical features using logistic regression (LR), logistic regression optimized by least absolute shrinkage and selection operator (Lasso) regularization (Lasso-LR), random forest (RF), and support vector machine (SVM). The area under the curve (AUC) was applied to determine the model with the highest discrimination. Calibration plots and decision curve analysis (DCA) were performed to evaluate the calibration and clinical usefulness of each model. RESULTS: A total of 530 PCa patients were included in this study. The Lasso-LR model showed good discrimination with an AUC, accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of 0.776, 0.712, 0.679, 0.745, 0.730, and 0.695, respectively, followed by SVM (AUC=0.740, 95% confidence interval [CI]=0.690-0.790), LR (AUC=0.725, 95% CI=0.674-0.776) and RF (AUC=0.666, 95% CI=0.618-0.714). Validation of the model showed that the Lasso-LR model had the best discriminative power (AUC=0.735, 95% CI=0.656-0.813), followed by SVM (AUC=0.723, 95% CI=0.644-0.802), LR (AUC=0.697, 95% CI=0.615-0.778) and RF (AUC=0.607, 95% CI=0.531-0.684) in the testing dataset. Both the Lasso-LR and SVM models were well-calibrated. DCA plots demonstrated that the predictive models except RF were clinically useful. CONCLUSION: The Lasso-LR model had good discrimination in the prediction of patients at high risk of harboring incorrect Gleason grade group assignment, and the use of this model may be greatly beneficial to urologists in treatment planning, patient selection, and the decision-making process for PCa patients.

摘要

目的:本研究旨在开发一种机器学习辅助模型,能够在做出治疗决策前准确预测活检 Gleason 分级组升级的概率。 方法:我们回顾性收集了前列腺癌(PCa)患者的数据。使用逻辑回归(LR)、通过最小绝对收缩和选择算子(Lasso)正则化优化的逻辑回归(Lasso-LR)、随机森林(RF)和支持向量机(SVM),从 16 个临床特征中开发了 4 种机器学习辅助模型。应用曲线下面积(AUC)来确定具有最高辨别力的模型。进行校准图和决策曲线分析(DCA)以评估每个模型的校准和临床实用性。 结果:本研究共纳入 530 例 PCa 患者。Lasso-LR 模型显示出良好的辨别力,其 AUC、准确率、敏感性、特异性、阳性预测值(PPV)和阴性预测值(NPV)分别为 0.776、0.712、0.679、0.745、0.730 和 0.695,其次是 SVM(AUC = 0.740,95%置信区间[CI] = 0.690 - 0.790)、LR(AUC = 0.725,95%CI = 0.674 - 0.776)和 RF(AUC = 0.666,95%CI = 0.618 - 0.714)。模型验证表明,在测试数据集中,Lasso-LR 模型具有最佳辨别力(AUC = 0.735,95%CI = 0.656 - 0.813),其次是 SVM(AUC = 0.723,95%CI = 0.644 - 0.802)、LR(AUC = 0.697,95%CI = 0.615 - 0.778)和 RF(AUC = 0.607,95%CI = 0.531 - 0.684)。Lasso-LR 和 SVM 模型校准良好。DCA 图表明,除 RF 外的预测模型在临床上是有用的。 结论:Lasso-LR 模型在预测 Gleason 分级组分配错误风险高的患者方面具有良好的辨别力,使用该模型可能对泌尿外科医生在前列腺癌患者的治疗计划、患者选择和决策过程中非常有益。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8f5/7765752/a5e0a42f40b7/CMAR-12-13099-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8f5/7765752/e13893a8662f/CMAR-12-13099-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8f5/7765752/98777fa44e34/CMAR-12-13099-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8f5/7765752/8c070d4e15bd/CMAR-12-13099-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8f5/7765752/ba0af16c71f7/CMAR-12-13099-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8f5/7765752/63e7fb15de7b/CMAR-12-13099-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8f5/7765752/a5e0a42f40b7/CMAR-12-13099-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8f5/7765752/e13893a8662f/CMAR-12-13099-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8f5/7765752/98777fa44e34/CMAR-12-13099-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8f5/7765752/8c070d4e15bd/CMAR-12-13099-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8f5/7765752/ba0af16c71f7/CMAR-12-13099-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8f5/7765752/63e7fb15de7b/CMAR-12-13099-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8f5/7765752/a5e0a42f40b7/CMAR-12-13099-g0006.jpg

相似文献

[1]
Predicting Prostate Cancer Upgrading of Biopsy Gleason Grade Group at Radical Prostatectomy Using Machine Learning-Assisted Decision-Support Models.

Cancer Manag Res. 2020-12-22

[2]
Machine learning-assisted decision-support models to better predict patients with calculous pyonephrosis.

Transl Androl Urol. 2021-2

[3]
Prediction of Pathological Upgrading at Radical Prostatectomy in Prostate Cancer Eligible for Active Surveillance: A Texture Features and Machine Learning-Based Analysis of Apparent Diffusion Coefficient Maps.

Front Oncol. 2021-2-4

[4]
Combined multiple clinical characteristics for prediction of discordance in grade and stage in prostate cancer patients undergoing systematic biopsy and radical prostatectomy.

Pathol Res Pract. 2020-11

[5]
Machine Learning-Based Models Enhance the Prediction of Prostate Cancer.

Front Oncol. 2022-7-6

[6]
Development and head-to-head comparison of machine-learning models to identify patients requiring prostate biopsy.

BMC Urol. 2021-5-16

[7]
Development of a machine learning model to predict the risk of late cardiogenic shock in patients with ST-segment elevation myocardial infarction.

Ann Transl Med. 2021-7

[8]
Machine learning constructs a diagnostic prediction model for calculous pyonephrosis.

Urolithiasis. 2024-6-19

[9]
Construction of the prediction model for multiple myeloma based on machine learning.

Int J Lab Hematol. 2024-10

[10]
Comparison of ischemic stroke diagnosis models based on machine learning.

Front Neurol. 2022-12-5

引用本文的文献

[1]
Machine learning models for predicting prostate cancer recurrence and identifying potential molecular biomarkers.

Front Oncol. 2025-2-17

[2]
Machine learning discrimination of Gleason scores below GG3 and above GG4 for HSPC patients diagnosis.

Sci Rep. 2024-10-27

[3]
PSA doubling time 4.65 months as an optimal cut-off of Japanese nonmetastatic castration-resistant prostate cancer.

Sci Rep. 2024-7-3

[4]
Machine learning prediction of Gleason grade group upgrade between in-bore biopsy and radical prostatectomy pathology.

Sci Rep. 2024-3-11

[5]
Machine-learning predicts time-series prognosis factors in metastatic prostate cancer patients treated with androgen deprivation therapy.

Sci Rep. 2023-4-18

[6]
Discriminatory Gleason grade group signatures of prostate cancer: An application of machine learning methods.

PLoS One. 2022

[7]
Machine Learning-Based Prediction of Pathological Upgrade From Combined Transperineal Systematic and MRI-Targeted Prostate Biopsy to Final Pathology: A Multicenter Retrospective Study.

Front Oncol. 2022-4-7

本文引用的文献

[1]
Circulating preoperative testosterone level predicts unfavourable disease at radical prostatectomy in men with International Society of Urological Pathology Grade Group 1 prostate cancer diagnosed with systematic biopsies.

World J Urol. 2021-6

[2]
Predicting in-hospital rupture of type A aortic dissection using Random Forest.

J Thorac Dis. 2019-11

[3]
How to Pick Out the "Unreal" Gleason 3 + 3 Patients: A Nomogram for More Precise Active Surveillance Protocol in Low-Risk Prostate Cancer in a Chinese Population.

J Invest Surg. 2021-6

[4]
Persistent Discordance in Grade, Stage, and NCCN Risk Stratification in Men Undergoing Targeted Biopsy and Radical Prostatectomy.

Urology. 2019-9-27

[5]
The Key Combined Value of Multiparametric Magnetic Resonance Imaging, and Magnetic Resonance Imaging-targeted and Concomitant Systematic Biopsies for the Prediction of Adverse Pathological Features in Prostate Cancer Patients Undergoing Radical Prostatectomy.

Eur Urol. 2020-6

[6]
A Machine Learning Method for Identifying Lung Cancer Based on Routine Blood Indices: Qualitative Feasibility Study.

JMIR Med Inform. 2019-8-15

[7]
Prostate cancer upgrading or downgrading of biopsy Gleason scores at radical prostatectomy: prediction of "regression to the mean" using routine clinical features with correlating biochemical relapse rates.

Asian J Androl. 2019

[8]
Machine Learning in Medicine.

N Engl J Med. 2019-4-4

[9]
A Novel Nomogram to Identify Candidates for Extended Pelvic Lymph Node Dissection Among Patients with Clinically Localized Prostate Cancer Diagnosed with Magnetic Resonance Imaging-targeted and Systematic Biopsies.

Eur Urol. 2018-10-17

[10]
Concordance of "Case Level" Global, Highest, and Largest Volume Cancer Grade Group on Needle Biopsy Versus Grade Group on Radical Prostatectomy.

Am J Surg Pathol. 2018-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索