机器学习预测接受雄激素剥夺治疗的转移性前列腺癌患者的时间序列预后因素。

Machine-learning predicts time-series prognosis factors in metastatic prostate cancer patients treated with androgen deprivation therapy.

机构信息

Department of Urology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba, Chiba, 260-8670, Japan.

Department of Artificial Intelligence Medicine, Graduate School of Medicine, Chiba University, Chiba, Chiba, Japan.

出版信息

Sci Rep. 2023 Apr 18;13(1):6325. doi: 10.1038/s41598-023-32987-6.

Abstract

Machine learning technology is expected to support diagnosis and prognosis prediction in medicine. We used machine learning to construct a new prognostic prediction model for prostate cancer patients based on longitudinal data obtained from age at diagnosis, peripheral blood and urine tests of 340 prostate cancer patients. Random survival forest (RSF) and survival tree were used for machine learning. In the time-series prognostic prediction model for metastatic prostate cancer patients, the RSF model showed better prediction accuracy than the conventional Cox proportional hazards model for almost all time periods of progression-free survival (PFS), overall survival (OS) and cancer-specific survival (CSS). Based on the RSF model, we created a clinically applicable prognostic prediction model using survival trees for OS and CSS by combining the values of lactate dehydrogenase (LDH) before starting treatment and alkaline phosphatase (ALP) at 120 days after treatment. Machine learning provides useful information for predicting the prognosis of metastatic prostate cancer prior to treatment intervention by considering the nonlinear and combined impacts of multiple features. The addition of data after the start of treatment would allow for more precise prognostic risk assessment of patients and would be beneficial for subsequent treatment selection.

摘要

机器学习技术有望为医学的诊断和预后预测提供支持。我们使用机器学习方法,基于 340 名前列腺癌患者的诊断时年龄、外周血和尿液检测数据,构建了一种新的前列腺癌患者预后预测模型。随机生存森林(RSF)和生存树被用于机器学习。在转移性前列腺癌患者的时间序列预后预测模型中,RSF 模型在无进展生存期(PFS)、总生存期(OS)和癌症特异性生存期(CSS)的几乎所有时间段的预测准确性均优于传统的 Cox 比例风险模型。基于 RSF 模型,我们通过结合治疗开始前的乳酸脱氢酶(LDH)值和治疗 120 天后的碱性磷酸酶(ALP)值,使用生存树创建了一个用于 OS 和 CSS 的临床适用的预后预测模型。机器学习通过考虑多个特征的非线性和综合影响,为治疗干预前预测转移性前列腺癌的预后提供了有用的信息。在治疗开始后增加数据,可以更精确地评估患者的预后风险,从而有利于后续的治疗选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/587e/10113215/8527968f879b/41598_2023_32987_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索