Suppr超能文献

高度多孔的还原氧化石墨烯包覆碳化棉纤维用作超级电容器电极。

Highly Porous Reduced Graphene Oxide-Coated Carbonized Cotton Fibers as Supercapacitor Electrodes.

作者信息

Bazan-Aguilar Antony, Ponce-Vargas Miguel, Caycho Clemente Luyo, La Rosa-Toro Adolfo, Baena-Moncada Angélica María

机构信息

Laboratorio de Investigación de Electroquímica Aplicada, Facultad de Ciencias, Universidad Nacional de Ingeniería, 210 Túpac Amaru Ave., 15333 Lima, Peru.

Center for the Development of Advanced Materials and Nanotechology, Universidad Nacional de Ingeniería, 210 Túpac Amaru Ave., 15333 Lima, Peru.

出版信息

ACS Omega. 2020 Dec 8;5(50):32149-32159. doi: 10.1021/acsomega.0c02370. eCollection 2020 Dec 22.

Abstract

High-surface-area carbon-based capacitors exhibit significant advantages relative to conventional graphite-based systems, such as high power density, low weight, and mechanical flexibility. In this work, novel porous carbon-based electrodes were obtained from commercial cotton fibers (CFs) impregnated with graphene oxide (GO) at different dipping times. A subsequent thermal treatment under inert atmosphere conditions enables the synthesis of electrodes based on reduced GO (RGO) supported on carbon fibers. Those synthetized with 15 min and 30 min of dipping time displayed high specific capacitance given their optimal micro-/ mesoporosity ratio. Particularly, the RGO/CCF supercapacitor reports a remarkable specific capacitance of 74.1 F g at 0.2 A g and a high cycling stability with a 97.7% capacitive retention, making this electrode a promising candidate for supercapacitor design. Finally, we conducted a density functional theory study to obtain deeper information about the driving forces leading to the GO/CF structures.

摘要

高表面积碳基电容器相对于传统的石墨基体系具有显著优势,如高功率密度、低重量和机械柔韧性。在本工作中,通过在不同浸渍时间用氧化石墨烯(GO)浸渍商业棉纤维(CFs)获得了新型多孔碳基电极。随后在惰性气氛条件下进行热处理能够合成基于负载在碳纤维上的还原氧化石墨烯(RGO)的电极。浸渍时间为15分钟和30分钟合成的电极由于其最佳的微孔/介孔率而显示出高比电容。特别是,RGO/CCF超级电容器在0.2 A g时具有74.1 F g的显著比电容和97.7%的电容保持率的高循环稳定性,使得该电极成为超级电容器设计的有前途的候选者。最后,我们进行了密度泛函理论研究以获得关于导致GO/CF结构的驱动力的更深入信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc7f/7758892/018ddbc3ca7d/ao0c02370_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验