Suppr超能文献

基于仪器化跑步机的步态动力学预测多发性硬化症:一种机器学习方法。

Predicting Multiple Sclerosis From Gait Dynamics Using an Instrumented Treadmill: A Machine Learning Approach.

出版信息

IEEE Trans Biomed Eng. 2021 Sep;68(9):2666-2677. doi: 10.1109/TBME.2020.3048142. Epub 2021 Aug 19.

Abstract

OBJECTIVE

Multiple Sclerosis (MS) is a neurological condition which widely affects people 50-60 years of age. While clinical presentations of MS are highly heterogeneous, mobility limitations are one of the most frequent symptoms. This study examines a machine learning (ML) framework for identifying MS through spatiotemporal and kinetic gait features.

METHODS

In this study, gait data during self-paced walking on an instrumented treadmill from 20 persons with MS and 20 age, weight, height, and gender-matched healthy older adults (HOA) were obtained. We explored two strategies to normalize data and minimize dependence on subject demographics; size-normalization (standard body size-based normalization) and regress-normalization (regression-based normalization using scaling factors derived by regressing gait features on multiple subject demographics); and proposed an ML based methodology to classify individual strides of older persons with MS (PwMS) from healthy controls. We generalized both across different walking tasks and subjects.

RESULTS

We observed that regress-normalization improved the accuracy of identifying pathological gait using ML when compared to size-normalization. When generalizing from comfortable walking to walking while talking, gradient boosting machine achieved the optimal subject classification accuracy and AUC of 94.3 and 1.0, respectively and for subject generalization, a multilayer perceptron resulted in the best accuracy and AUC of 80% and 0.86, respectively, both with regression-normalized data.

CONCLUSION

The integration of gait data and ML may provide a viable patient-centric approach to aid clinicians in monitoring MS.

SIGNIFICANCE

The results of this study have future implications for the way regression normalized gait features may be clinically used to design ML-based disease prediction strategies and monitor disease progression in PwMS.

摘要

目的

多发性硬化症(MS)是一种广泛影响 50-60 岁人群的神经系统疾病。虽然 MS 的临床表现高度异质,但运动障碍是最常见的症状之一。本研究通过时空和运动学步态特征来研究一种识别 MS 的机器学习(ML)框架。

方法

本研究中,从 20 名 MS 患者和 20 名年龄、体重、身高和性别匹配的健康老年人(HOA)在仪器化跑步机上进行自主步行时获得了步态数据。我们探索了两种数据归一化策略,以最小化对受试者人口统计学数据的依赖:大小归一化(基于标准身体大小的归一化)和回归归一化(基于回归步态特征对多个受试者人口统计学数据的缩放因子的回归归一化);并提出了一种基于 ML 的方法来对 MS 患者(PwMS)和健康对照者的个体步进行分类。我们在不同的步行任务和受试者中都进行了推广。

结果

我们观察到,与大小归一化相比,回归归一化在使用 ML 识别病理步态时提高了准确性。当从舒适步行推广到边说边步行时,梯度提升机实现了最佳的受试者分类准确性和 AUC,分别为 94.3 和 1.0;对于受试者的推广,多层感知机的准确率和 AUC 分别为 80%和 0.86,两者均采用回归归一化数据。

结论

步态数据与 ML 的结合可能为以患者为中心的方法提供一种可行的方法,以帮助临床医生监测 MS。

意义

本研究的结果对回归归一化步态特征在临床上如何用于设计基于 ML 的疾病预测策略和监测 PwMS 疾病进展具有未来意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验