Suppr超能文献

基于身体加速度模型的反射标记数据训练和可穿戴加速度计实现对步态疾病的诊断。

Diagnosis of disease affecting gait with a body acceleration-based model using reflected marker data for training and a wearable accelerometer for implementation.

机构信息

Architectural Engineering Department, University of Nebraska-Lincoln, Omaha, NE, 68182, USA.

Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE, 6160, USA.

出版信息

Sci Rep. 2024 Jan 11;14(1):1075. doi: 10.1038/s41598-023-50727-8.

Abstract

This paper demonstrates the value of a framework for processing data on body acceleration as a uniquely valuable tool for diagnosing diseases that affect gait early. As a case study, we used this model to identify individuals with peripheral artery disease (PAD) and distinguish them from those without PAD. The framework uses acceleration data extracted from anatomical reflective markers placed in different body locations to train the diagnostic models and a wearable accelerometer carried at the waist for validation. Reflective marker data have been used for decades in studies evaluating and monitoring human gait. They are widely available for many body parts but are obtained in specialized laboratories. On the other hand, wearable accelerometers enable diagnostics outside lab conditions. Models trained by raw marker data at the sacrum achieve an accuracy of 92% in distinguishing PAD patients from non-PAD controls. This accuracy drops to 28% when data from a wearable accelerometer at the waist validate the model. This model was enhanced by using features extracted from the acceleration rather than the raw acceleration, with the marker model accuracy only dropping from 86 to 60% when validated by the wearable accelerometer data.

摘要

本文展示了一种处理身体加速度数据的框架的价值,该框架作为一种早期诊断影响步态的疾病的独特有价值的工具。作为一个案例研究,我们使用这个模型来识别外周动脉疾病 (PAD) 患者,并将他们与没有 PAD 的患者区分开来。该框架使用从放置在不同身体位置的解剖反射标记中提取的加速度数据来训练诊断模型,并使用佩戴在腰部的可穿戴加速度计进行验证。反射标记数据在评估和监测人类步态的研究中已经使用了几十年。它们在许多身体部位广泛可用,但只能在专门的实验室中获得。另一方面,可穿戴加速度计可以在实验室条件之外进行诊断。使用骶骨处原始标记数据训练的模型在区分 PAD 患者和非 PAD 对照组方面的准确率达到 92%。当使用腰部的可穿戴加速度计验证模型时,准确率下降到 28%。通过使用从加速度而不是原始加速度中提取的特征来增强该模型,当使用可穿戴加速度计数据验证时,标记模型的准确率仅从 86%下降到 60%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50ba/10784467/fed00582e330/41598_2023_50727_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验