Suppr超能文献

基于单台 2D IR 相机的临床睡眠姿态检测中的迁移学习。

Transfer Learning for Clinical Sleep Pose Detection Using a Single 2D IR Camera.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2021;29:290-299. doi: 10.1109/TNSRE.2020.3048121. Epub 2021 Mar 1.

Abstract

Sleep quality is an important determinant of human health and wellbeing. Novel technologies that can quantify sleep quality at scale are required to enable the diagnosis and epidemiology of poor sleep. One important indicator of sleep quality is body posture. In this paper, we present the design and implementation of a non-contact sleep monitoring system that analyses body posture and movement. Supervised machine learning strategies applied to noncontact vision-based infrared camera data using a transfer learning approach, successfully quantified sleep poses of participants covered by a blanket. This represents the first occasion that such a machine learning approach has been used to successfully detect four predefined poses and the empty bed state during 8-10 hour overnight sleep episodes representing a realistic domestic sleep situation. The methodology was evaluated against manually scored sleep poses and poses estimated using clinical polysomnography measurement technology. In a cohort of 12 healthy participants, we find that a ResNet-152 pre-trained network achieved the best performance compared with the standard de novo CNN network and other pre-trained networks. The performance of our approach was better than other video-based methods for sleep pose estimation and produced higher performance compared to the clinical standard for pose estimation using a polysomnography position sensor. It can be concluded that infrared video capture coupled with deep learning AI can be successfully used to quantify sleep poses as well as the transitions between poses in realistic nocturnal conditions, and that this non-contact approach provides superior pose estimation compared to currently accepted clinical methods.

摘要

睡眠质量是人类健康和幸福的重要决定因素。需要新型的技术来大规模量化睡眠质量,以便能够诊断和研究睡眠不佳的情况。睡眠质量的一个重要指标是身体姿势。在本文中,我们介绍了一种非接触式睡眠监测系统的设计和实现,该系统可分析身体姿势和运动。使用迁移学习方法,将监督机器学习策略应用于基于非接触式视觉的红外摄像机数据,成功地量化了被毯子覆盖的参与者的睡眠姿势。这代表了首次使用这种机器学习方法成功检测到四个预定义姿势和空床状态的情况,这些姿势和状态是在代表现实家庭睡眠情况的 8-10 小时夜间睡眠期间记录的。该方法针对手动评分的睡眠姿势和使用临床多导睡眠图测量技术估计的姿势进行了评估。在 12 名健康参与者的队列中,我们发现与标准从头开始的 CNN 网络和其他预训练网络相比,ResNet-152 预训练网络的性能最佳。与用于睡眠姿势估计的其他基于视频的方法相比,我们的方法的性能更好,并且与使用多导睡眠图位置传感器进行姿势估计的临床标准相比,性能更高。可以得出结论,红外视频捕获与深度学习 AI 可以成功地用于量化现实夜间条件下的睡眠姿势以及姿势之间的转换,并且这种非接触式方法提供了比当前接受的临床方法更高的姿势估计性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验