Suppr超能文献

利用部分空间相干数字全息显微镜和深度神经网络实现高空间带宽的定量相位成像。

High space-bandwidth in quantitative phase imaging using partially spatially coherent digital holographic microscopy and a deep neural network.

出版信息

Opt Express. 2020 Nov 23;28(24):36229-36244. doi: 10.1364/OE.402666.

Abstract

Quantitative phase microscopy (QPM) is a label-free technique that enables monitoring of morphological changes at the subcellular level. The performance of the QPM system in terms of spatial sensitivity and resolution depends on the coherence properties of the light source and the numerical aperture (NA) of objective lenses. Here, we propose high space-bandwidth quantitative phase imaging using partially spatially coherent digital holographic microscopy (PSC-DHM) assisted with a deep neural network. The PSC source synthesized to improve the spatial sensitivity of the reconstructed phase map from the interferometric images. Further, compatible generative adversarial network (GAN) is used and trained with paired low-resolution (LR) and high-resolution (HR) datasets acquired from the PSC-DHM system. The training of the network is performed on two different types of samples, i.e. mostly homogenous human red blood cells (RBC), and on highly heterogeneous macrophages. The performance is evaluated by predicting the HR images from the datasets captured with a low NA lens and compared with the actual HR phase images. An improvement of 9× in the space-bandwidth product is demonstrated for both RBC and macrophages datasets. We believe that the PSC-DHM + GAN approach would be applicable in single-shot label free tissue imaging, disease classification and other high-resolution tomography applications by utilizing the longitudinal spatial coherence properties of the light source.

摘要

定量相位显微镜(QPM)是一种无需标记的技术,可用于监测亚细胞水平的形态变化。QPM 系统在空间灵敏度和分辨率方面的性能取决于光源的相干特性和物镜的数值孔径(NA)。在这里,我们提出了一种使用部分空间相干数字全息显微镜(PSC-DHM)和深度神经网络辅助的高空间带宽定量相位成像方法。通过合成部分空间相干源来提高从干涉图像重建相位图的空间灵敏度。此外,还使用了兼容的生成对抗网络(GAN),并使用从 PSC-DHM 系统获得的低分辨率(LR)和高分辨率(HR)数据集对其进行训练。网络的训练是在两种不同类型的样本上进行的,即主要均匀的人红细胞(RBC)和高度异质的巨噬细胞。通过从使用低 NA 透镜捕获的数据集预测 HR 图像,并将其与实际的 HR 相位图像进行比较,来评估性能。对于 RBC 和巨噬细胞数据集,均实现了 9 倍的空间带宽积的提高。我们相信,利用光源的纵向空间相干特性,PSC-DHM+GAN 方法将适用于单次无标记组织成像、疾病分类和其他高分辨率层析成像应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验