Suppr超能文献

基于数字全息显微镜和生成对抗网络的视频帧率定量相位成像

Video-Rate Quantitative Phase Imaging Using a Digital Holographic Microscope and a Generative Adversarial Network.

机构信息

Department of Electrical and Computer Engineering, The University of Memphis, Memphis, TN 38152, USA.

Applied Optics Group, Physical Sciences Department, Universidad EAFIT, Medellin 050037, Colombia.

出版信息

Sensors (Basel). 2021 Dec 1;21(23):8021. doi: 10.3390/s21238021.

Abstract

The conventional reconstruction method of off-axis digital holographic microscopy (DHM) relies on computational processing that involves spatial filtering of the sample spectrum and tilt compensation between the interfering waves to accurately reconstruct the phase of a biological sample. Additional computational procedures such as numerical focusing may be needed to reconstruct free-of-distortion quantitative phase images based on the optical configuration of the DHM system. Regardless of the implementation, any DHM computational processing leads to long processing times, hampering the use of DHM for video-rate renderings of dynamic biological processes. In this study, we report on a conditional generative adversarial network (cGAN) for robust and fast quantitative phase imaging in DHM. The reconstructed phase images provided by the GAN model present stable background levels, enhancing the visualization of the specimens for different experimental conditions in which the conventional approach often fails. The proposed learning-based method was trained and validated using human red blood cells recorded on an off-axis Mach-Zehnder DHM system. After proper training, the proposed GAN yields a computationally efficient method, reconstructing DHM images seven times faster than conventional computational approaches.

摘要

离轴数字全息显微镜 (DHM) 的传统重建方法依赖于计算处理,包括对样品光谱进行空间滤波和对干涉波之间的倾斜进行补偿,以准确重建生物样品的相位。可能需要额外的计算程序,例如数值聚焦,以便根据 DHM 系统的光学配置重建无失真的定量相位图像。无论采用哪种实现方式,任何 DHM 计算处理都会导致处理时间过长,从而阻碍了 DHM 在用于动态生物过程的视频帧率渲染中的使用。在本研究中,我们报告了一种用于 DHM 中稳健快速定量相位成像的条件生成对抗网络 (cGAN)。GAN 模型提供的重建相位图像具有稳定的背景水平,增强了对不同实验条件下样本的可视化效果,而传统方法在这些条件下常常失败。所提出的基于学习的方法使用在离轴马赫-曾德尔 DHM 系统上记录的人红细胞进行了训练和验证。经过适当的训练,所提出的 GAN 产生了一种计算效率高的方法,重建 DHM 图像的速度比传统的计算方法快七倍。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c24c/8659916/21625f1ec672/sensors-21-08021-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验