Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
Chaos. 2020 Dec;30(12):123135. doi: 10.1063/5.0028236.
The rapid spread of COVID-19 worldwide presents a great challenge to epidemic modelers. Model outcomes vary widely depending on the characteristics of a pathogen and the models. Here, we present a logistic model for the epidemic spread and divide the spread of the novel coronavirus into two phases: the first phase is a natural exponential growth phase that occurs in the absence of intervention and the second phase is a regulated growth phase that is affected by enforcing social distancing and isolation. We apply the model to a number of pandemic centers. Our results are in good agreement with the data to date and show that social distancing significantly reduces the epidemic spread and flattens the curve. Predictions on the spreading trajectory including the total infections and peak time of new infections for a community of any size are made weeks ahead, providing the vital information and lead time needed to prepare for and mitigate the epidemic. The methodology presented here has immediate and far-reaching applications for ongoing outbreaks or similar future outbreaks of other emergent infectious diseases.
新冠病毒在全球范围内的迅速传播,给传染病建模者带来了巨大的挑战。由于病原体和模型的特征不同,模型结果也存在很大差异。在这里,我们提出了一种用于传染病传播的 logistic 模型,将新型冠状病毒的传播分为两个阶段:第一阶段是在没有干预的情况下发生的自然指数增长阶段,第二阶段是受实施社会隔离和隔离影响的调节增长阶段。我们将模型应用于多个大流行中心。我们的结果与迄今为止的数据非常吻合,表明社会隔离可显著减少传染病的传播,并使曲线变平。我们可以提前数周对任何规模社区的传染病传播轨迹(包括总感染人数和新感染人数的峰值时间)进行预测,从而为准备和减轻传染病提供重要的信息和时间。这里提出的方法对于正在进行的疫情爆发或其他类似的新发传染病的未来爆发具有直接和深远的应用。