Suppr超能文献

医院衰弱风险评分在原发性全髋关节和膝关节置换术方面优于现有风险分层模型。

Hospital Frailty Risk Score Outperforms Current Risk Stratification Models in Primary Total Hip and Knee Arthroplasty.

机构信息

Department of Orthopaedics, University Hospital Regensburg, Bad Abbach, Germany.

出版信息

J Arthroplasty. 2021 May;36(5):1533-1542. doi: 10.1016/j.arth.2020.12.002. Epub 2020 Dec 5.

Abstract

BACKGROUND

Models for risk stratification and prediction of outcome, such as the Charlson Comorbidity Index (CCI), the Elixhauser Comorbidity Method (ECM), the 5-factor modified Frailty Index (mFI-5), and the Hospital Frailty Risk Score (HFRS) have been validated in orthopedic surgery. The aim of this study is to compare the predictive power of these models in total hip and knee replacement.

METHODS

In a retrospective analysis of 8250 patients who had undergone total joint replacement between 2011 and 2019, CCI, ECM, mFI-5, and HFRS were calculated for each patient. Receiver operating characteristic curve plots were generated and the area under the curve (AUC) was compared between each score with regard to adverse events such as transfusion, surgical, medical, and other complications. Multivariate logistic regression models were used to assess the relationship among risk stratification models, demographic factors, and postoperative adverse events.

RESULTS

In prediction of surgical complications, HFRS performed best (AUC: 0.719, P < .001), followed by ECM (AUC: 0.578, P < .001), mFI-5 (AUC: 0.564, P = .003), and CCI (AUC: 0.555, P = .012). With regard to medical complications, other complications, and transfusion, HFRS also was superior to ECM, mFI-5, and CCI. Multivariate logistic regression analyses revealed HFRS as an independent risk stratification model associated with all captured adverse events (P ≤ .001).

CONCLUSION

The HFRS is superior to current risk stratification models in the context of total joint replacement. As the HRFS derives from routinely collected administrative data, healthcare providers can identify at-risk patients without additional effort or expense.

摘要

背景

风险分层和预后预测模型,如 Charlson 合并症指数 (CCI)、Elixhauser 合并症方法 (ECM)、5 因素改良衰弱指数 (mFI-5) 和医院衰弱风险评分 (HFRS),已在骨科手术中得到验证。本研究旨在比较这些模型在全髋关节和膝关节置换中的预测能力。

方法

对 2011 年至 2019 年间接受全关节置换的 8250 例患者进行回顾性分析,计算每位患者的 CCI、ECM、mFI-5 和 HFRS。生成受试者工作特征曲线图,并比较每个评分与输血、手术、医疗和其他并发症等不良事件之间的曲线下面积 (AUC)。多变量逻辑回归模型用于评估风险分层模型、人口统计学因素与术后不良事件之间的关系。

结果

在预测手术并发症方面,HFRS 表现最佳(AUC:0.719,P<.001),其次是 ECM(AUC:0.578,P<.001)、mFI-5(AUC:0.564,P=.003)和 CCI(AUC:0.555,P=.012)。在医疗并发症、其他并发症和输血方面,HFRS 也优于 ECM、mFI-5 和 CCI。多变量逻辑回归分析显示,HFRS 是与所有捕获不良事件相关的独立风险分层模型(P≤.001)。

结论

在全关节置换的背景下,HFRS 优于当前的风险分层模型。由于 HRFS 源自常规收集的行政数据,医疗保健提供者无需额外的努力或费用即可识别高危患者。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验