Suppr超能文献

教程:机器学习在行为研究中的应用。

Tutorial: Applying Machine Learning in Behavioral Research.

作者信息

Turgeon Stéphanie, Lanovaz Marc J

机构信息

École de psychoéducation, Université de Montréal, C.P. 6128, succursale Centre-Ville, Montreal, QC H3C 3J7 Canada.

Centre de recherche de l'Institut universitaire en santé mentale de Montréal, Montreal, QC Canada.

出版信息

Perspect Behav Sci. 2020 Nov 10;43(4):697-723. doi: 10.1007/s40614-020-00270-y. eCollection 2020 Dec.

Abstract

Machine-learning algorithms hold promise for revolutionizing how educators and clinicians make decisions. However, researchers in behavior analysis have been slow to adopt this methodology to further develop their understanding of human behavior and improve the application of the science to problems of applied significance. One potential explanation for the scarcity of research is that machine learning is not typically taught as part of training programs in behavior analysis. This tutorial aims to address this barrier by promoting increased research using machine learning in behavior analysis. We present how to apply the random forest, support vector machine, stochastic gradient descent, and k-nearest neighbors algorithms on a small dataset to better identify parents of children with autism who would benefit from a behavior analytic interactive web training. These step-by-step applications should allow researchers to implement machine-learning algorithms with novel research questions and datasets.

摘要

机器学习算法有望彻底改变教育工作者和临床医生的决策方式。然而,行为分析领域的研究人员在采用这种方法以进一步加深对人类行为的理解并将该科学应用于具有实际意义的问题方面进展缓慢。研究稀缺的一个潜在原因是,机器学习通常不作为行为分析培训项目的一部分进行教授。本教程旨在通过推动在行为分析中更多地使用机器学习进行研究来克服这一障碍。我们展示了如何在一个小数据集上应用随机森林、支持向量机、随机梯度下降和k近邻算法,以更好地识别那些将从行为分析交互式网络培训中受益的自闭症儿童的家长。这些逐步的应用应能让研究人员用新颖的研究问题和数据集来实施机器学习算法。

相似文献

1
Tutorial: Applying Machine Learning in Behavioral Research.
Perspect Behav Sci. 2020 Nov 10;43(4):697-723. doi: 10.1007/s40614-020-00270-y. eCollection 2020 Dec.
2
Evaluating the Performance of Various Machine Learning Algorithms to Detect Subclinical Keratoconus.
Transl Vis Sci Technol. 2020 Apr 24;9(2):24. doi: 10.1167/tvst.9.2.24. eCollection 2020 Apr.
3
Radiogenomics of lower-grade gliomas: machine learning-based MRI texture analysis for predicting 1p/19q codeletion status.
Eur Radiol. 2020 Feb;30(2):877-886. doi: 10.1007/s00330-019-06492-2. Epub 2019 Nov 5.
4
Optimizing neural networks for medical data sets: A case study on neonatal apnea prediction.
Artif Intell Med. 2019 Jul;98:59-76. doi: 10.1016/j.artmed.2019.07.008. Epub 2019 Jul 25.
5
Probability estimation with machine learning methods for dichotomous and multicategory outcome: applications.
Biom J. 2014 Jul;56(4):564-83. doi: 10.1002/bimj.201300077. Epub 2014 Feb 12.
7
Machine learning for evolutive lymphoma and residual masses recognition in whole body diffusion weighted magnetic resonance images.
Comput Methods Programs Biomed. 2021 Sep;209:106320. doi: 10.1016/j.cmpb.2021.106320. Epub 2021 Aug 4.
8
RNAmining: A machine learning stand-alone and web server tool for RNA coding potential prediction.
F1000Res. 2021 Apr 26;10:323. doi: 10.12688/f1000research.52350.2. eCollection 2021.
9
Machine Learning Methods in Computational Toxicology.
Methods Mol Biol. 2018;1800:119-139. doi: 10.1007/978-1-4939-7899-1_5.
10
Behavioral Modeling for Mental Health using Machine Learning Algorithms.
J Med Syst. 2018 Apr 3;42(5):88. doi: 10.1007/s10916-018-0934-5.

引用本文的文献

1
The Development of a Behavior Plan Quality Assurance Instrument in a Publicly Funded System of Care.
Behav Anal Pract. 2024 Feb 8;18(2):349-364. doi: 10.1007/s40617-024-00909-1. eCollection 2025 Jun.
2
Machine learning to detect schedules using spatiotemporal data of behavior: A proof of concept.
J Exp Anal Behav. 2025 Jul;124(1):e70029. doi: 10.1002/jeab.70029.
6
Perceptions of Machine Learning among Therapists Practicing Applied Behavior Analysis: A National Survey.
Behav Anal Pract. 2024 May 23;17(4):1147-1159. doi: 10.1007/s40617-024-00936-y. eCollection 2024 Dec.
7
Lexicon-Based Sentiment Analysis in Behavioral Research.
Perspect Behav Sci. 2024 Jan 24;47(1):283-310. doi: 10.1007/s40614-023-00394-x. eCollection 2024 Mar.
8
Starting the Conversation Around the Ethical Use of Artificial Intelligence in Applied Behavior Analysis.
Behav Anal Pract. 2023 Nov 3;17(1):107-122. doi: 10.1007/s40617-023-00868-z. eCollection 2024 Mar.
9
The Promises and Possibilities of Artificial Intelligence in the Delivery of Behavior Analytic Services.
Behav Anal Pract. 2023 Oct 11;17(1):123-136. doi: 10.1007/s40617-023-00864-3. eCollection 2024 Mar.
10
Mobile sensing to advance tumor modeling in cancer patients: A conceptual framework.
Internet Interv. 2023 Jul 8;34:100644. doi: 10.1016/j.invent.2023.100644. eCollection 2023 Dec.

本文引用的文献

1
Machine Learning to Analyze Single-Case Data: A Proof of Concept.
Perspect Behav Sci. 2020 Jan 21;43(1):21-38. doi: 10.1007/s40614-020-00244-0. eCollection 2020 Mar.
2
Effects of an Interactive Web Training to Support Parents in Reducing Challenging Behaviors in Children with Autism.
Behav Modif. 2021 Sep;45(5):769-796. doi: 10.1177/0145445520915671. Epub 2020 Apr 4.
3
The consecutive controlled case series: Design, data-analytics, and reporting methods supporting the study of generality.
J Appl Behav Anal. 2020 Apr;53(2):596-619. doi: 10.1002/jaba.691. Epub 2020 Mar 3.
4
Analysis of Decision Tree and K-Nearest Neighbor Algorithm in the Classification of Breast Cancer.
Asian Pac J Cancer Prev. 2019 Dec 1;20(12):3777-3781. doi: 10.31557/APJCP.2019.20.12.3777.
5
Machine learning algorithm validation with a limited sample size.
PLoS One. 2019 Nov 7;14(11):e0224365. doi: 10.1371/journal.pone.0224365. eCollection 2019.
6
A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models.
J Clin Epidemiol. 2019 Jun;110:12-22. doi: 10.1016/j.jclinepi.2019.02.004. Epub 2019 Feb 11.
8
A consecutive case series analysis of a behavioral intervention for enuresis in children with developmental disabilities.
Dev Neurorehabil. 2018 Jul;21(5):336-344. doi: 10.1080/17518423.2018.1462269. Epub 2018 Apr 13.
9
Deep learning for healthcare: review, opportunities and challenges.
Brief Bioinform. 2018 Nov 27;19(6):1236-1246. doi: 10.1093/bib/bbx044.
10
Intensity and Learning Outcomes in the Treatment of Children With Autism Spectrum Disorder.
Behav Modif. 2017 Mar;41(2):229-252. doi: 10.1177/0145445516667059. Epub 2016 Sep 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验