Suppr超能文献

评估各种机器学习算法检测亚临床圆锥角膜的性能。

Evaluating the Performance of Various Machine Learning Algorithms to Detect Subclinical Keratoconus.

作者信息

Cao Ke, Verspoor Karin, Sahebjada Srujana, Baird Paul N

机构信息

Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia.

Department of Surgery, Ophthalmology, The University of Melbourne, Melbourne, Victoria, Australia.

出版信息

Transl Vis Sci Technol. 2020 Apr 24;9(2):24. doi: 10.1167/tvst.9.2.24. eCollection 2020 Apr.

Abstract

PURPOSE

Keratoconus (KC) represents one of the leading causes of corneal transplantation worldwide. Detecting subclinical KC would lead to better management to avoid the need for corneal grafts, but the condition is clinically challenging to diagnose. We wished to compare eight commonly used machine learning algorithms using a range of parameter combinations by applying them to our KC dataset and build models to better differentiate subclinical KC from non-KC eyes.

METHODS

Oculus Pentacam was used to obtain corneal parameters on 49 subclinical KC and 39 control eyes, along with clinical and demographic parameters. Eight machine learning methods were applied to build models to differentiate subclinical KC from control eyes. Dominant algorithms were trained with all combinations of the considered parameters to select important parameter combinations. The performance of each model was evaluated and compared.

RESULTS

Using a total of eleven parameters, random forest, support vector machine and k-nearest neighbors had better performance in detecting subclinical KC. The highest area under the curve of 0.97 for detecting subclinical KC was achieved using five parameters by the random forest method. The highest sensitivity (0.94) and specificity (0.90) were obtained by the support vector machine and the k-nearest neighbor model, respectively.

CONCLUSIONS

This study showed machine learning algorithms can be applied to identify subclinical KC using a minimal parameter set that are routinely collected during clinical eye examination.

TRANSLATIONAL RELEVANCE

Machine learning algorithms can be built using routinely collected clinical parameters that will assist in the objective detection of subclinical KC.

摘要

目的

圆锥角膜(KC)是全球角膜移植的主要原因之一。检测亚临床圆锥角膜将有助于更好地管理病情,避免角膜移植的需求,但这种情况在临床上诊断具有挑战性。我们希望通过将八种常用的机器学习算法应用于我们的圆锥角膜数据集,并使用一系列参数组合来构建模型,以更好地区分亚临床圆锥角膜和非圆锥角膜眼。

方法

使用欧几里得Pentacam获取49只亚临床圆锥角膜眼和39只对照眼的角膜参数,以及临床和人口统计学参数。应用八种机器学习方法构建模型,以区分亚临床圆锥角膜眼和对照眼。使用所考虑参数的所有组合对主要算法进行训练,以选择重要的参数组合。评估并比较每个模型的性能。

结果

使用总共11个参数,随机森林、支持向量机和k近邻算法在检测亚临床圆锥角膜方面具有更好的性能。随机森林方法使用五个参数检测亚临床圆锥角膜时,曲线下面积最高达到0.97。支持向量机和k近邻模型分别获得了最高的灵敏度(0.94)和特异性(0.90)。

结论

本研究表明,机器学习算法可应用于使用临床眼科检查中常规收集的最少参数集来识别亚临床圆锥角膜。

转化相关性

可以使用常规收集的临床参数构建机器学习算法,这将有助于客观检测亚临床圆锥角膜。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验